• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of the Heterotrimeric Go Protein Alpha-subunit on the Cardiac Secretory Phenotype

Roeske, Cassandra 21 May 2013 (has links)
Atrial natriuretic factor (ANF) is a polypeptide hormone produced in heart atria, stored in atrial secretory granules and released into the circulation in response to various stimuli. Proper sorting of ANF at the level of the trans-Golgi network (TGN) is required for the storage of ANF in these specific granules, and this sorting of hormones has been found to be associated with G-proteins. Specifically, the Go protein alpha-subunit (Gαo) was established to participate in the stretch-secretion coupling of ANF, but may also be involved in the transporting of ANF from the TGN into atrial granules for storage and maturation. Based on knowledge of Gαo involvement in hormone production in other endocrine tissues, protein-protein interactions of Gαo and proANF and their immunochemical co-localization in granules, the direct involvement of these two proteins in atrial granule biogenesis is probable. In this study, mice were created using the Cre/lox recombination system with a conditional Gαo knockout in cardiocytes to study and characterize ANF production, secretion and granule formation. Deletion of this gene was successful following standard breeding protocols. Characterization and validation of cellular and molecular content of the knockout mice through mRNA levels, protein expression, peptide content, electron microscopy, and electrocardiography determined that a significant phenotypic difference was observed in the abundance of atrial granules. However, Gαo knockout mice did not significantly alter the production and secretion of ANF and only partially prevented granule biogenesis, likely due to incomplete Gαo knockout. These studies demonstrate an involvement of Gαo in specific atrial granule formation.
2

Role of the Heterotrimeric Go Protein Alpha-subunit on the Cardiac Secretory Phenotype

Roeske, Cassandra January 2013 (has links)
Atrial natriuretic factor (ANF) is a polypeptide hormone produced in heart atria, stored in atrial secretory granules and released into the circulation in response to various stimuli. Proper sorting of ANF at the level of the trans-Golgi network (TGN) is required for the storage of ANF in these specific granules, and this sorting of hormones has been found to be associated with G-proteins. Specifically, the Go protein alpha-subunit (Gαo) was established to participate in the stretch-secretion coupling of ANF, but may also be involved in the transporting of ANF from the TGN into atrial granules for storage and maturation. Based on knowledge of Gαo involvement in hormone production in other endocrine tissues, protein-protein interactions of Gαo and proANF and their immunochemical co-localization in granules, the direct involvement of these two proteins in atrial granule biogenesis is probable. In this study, mice were created using the Cre/lox recombination system with a conditional Gαo knockout in cardiocytes to study and characterize ANF production, secretion and granule formation. Deletion of this gene was successful following standard breeding protocols. Characterization and validation of cellular and molecular content of the knockout mice through mRNA levels, protein expression, peptide content, electron microscopy, and electrocardiography determined that a significant phenotypic difference was observed in the abundance of atrial granules. However, Gαo knockout mice did not significantly alter the production and secretion of ANF and only partially prevented granule biogenesis, likely due to incomplete Gαo knockout. These studies demonstrate an involvement of Gαo in specific atrial granule formation.
3

Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain

Toledo, Pamela L., Vazquez, Diego S., Gianotti, Alejo R., Abate, Milagros B., Wegbrod, Carolin, Torkko, Juha M., Solimena, Michele, Ermácora, Mario R. 16 August 2023 (has links)
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin—the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.

Page generated in 0.0926 seconds