• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 17
  • 12
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 79
  • 76
  • 75
  • 38
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Circulating cells and cytokines in arteriogenesis

Schirmer, Stephan Henrik, January 1900 (has links)
Proefschrift Universiteit van Amsterdam. / Met lit.opg. en samenvatting in het Nederlands.
22

G-CSF GENE THERAPY FOR BRAIN DISEASES AND/OR SICKLE CELL ANEMIA

Unknown Date (has links)
Ischemic stroke is defined as a blockage or reduced flow of blood to select areas of brain tissue due to either plaque formation or buildup of blood clots in the small blood vessels. A characteristic of sickle cell anemic patients is the potential for them to experience a similar type of blockage due to the sticky nature of the sickled red blood cells as well as defective oxygen delivery to the brain. Because of this similarity, sickle cell anemia may represent a good animal research model for therapeutic intervention based on stroke models. In recent studies, Granulocyte-Colony Stimulating Factor (GCSF), has been shown to exhibit a robust range of neuroprotective properties against neurological disorders including ischemic stroke through preservation of the endoplasmic reticulum (ER) by modulating various ER stress pathways. Through cognitive deficit analysis in the form of behavioral and locomotor experiments in addition to in situ biomarker analysis by way of western blotting and immunohistochemistry, we found that G-CSF gene therapy exhibited neurogenic and neuroprotective effects in ischemic mouse models and could possibly serve as a good therapy for other diseases that share similar pathology to stroke. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
23

Mathematical modeling for designing new treatment strategies with Granulocyte-Colony Stimulating Factor

Foley, Catherine, January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Mathematics and Statistics. Title from title page of PDF (viewed 2008/01/12). Includes bibliographical references.
24

Inhibition of GM-CSF Production in Fibroblast-Monocyte Coculture by Prednisone and Effects of RHFM-CSF on Human Lung Fibroblasts

Fitzgerald, S. Matthew, Chi, David S., Lee, Steven A., Hall, Kenton, Krishnaswamy, Guha 01 January 2004 (has links)
Fibroblasts play a sentinel role in asthmatic disease. They are the main constituents of connective tissue and are increased in number in the asthmatic lung. They are also capable of secreting a diverse repertoire of cytokines and are able to be activated by pro-inflammatory cytokines and cell-cell contact. Previously we have reported that normal human lung fibroblasts (NHLF) can be activated by monocytes (U937) through cell-cell contact to produce GM-CSF. Here we show that GM-CSF production from NHLF activated by monocyte contact is inhibited by prednisone, a synthetic glucocorticoid used in the treatment of asthma. GM-CSF is an acidic glycoprotein that potentiates development of cells in the granulocyte and macrophage lineage and is secreted at sites of peripheral inflammation. The receptor for GM-CSF was found on NHLF by flow cytometry and was able to be up-regulated by interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha and recombinant human (rh) GM-CSF. To test autocrine effects of GM-CSF on fibroblasts, rh GM-CSF was used in proliferation studies and was found to decrease fibroblast proliferation. Prednisone was used to block NF-kappaB activation and GM-CSF gene expression as well. These data indicate mechanism of action and treatment for cell-cell contact mediated inflammation of infiltrating monocytes with fibroblasts as seen in asthma and other diseases like graft versus host disease.
25

Evaluation von Granulozyten Kolonie-stimulierendem Faktor (G-CSF) und einem monoklonalen Antikörper gegen Kapselpolysaccharid zur Therapie der experimentellen Klebsiella pneumoniae-Pneumonie

Held, Thomas 20 June 2001 (has links)
G-CSF besitzt direkte Effekte auf die Aktivierung bakterizider Eigenschaften neutrophiler Granulozyten und verbessert das Überleben bakteriell infizierter Tiere. Daher wurde in der hier vorliegenden Arbeit der Effekt einer prophylaktischen oder therapeutischen Gabe von G-CSF bei experimenteller Pneumonie durch Klebsiella pneumoniae in Mäusen untersucht. Unerwarteterweise verschlechterte aber eine prophylaktische G-CSF-Gabe das Überleben und führte dosisabhängig zu einer Steigerung der bakteriellen Dissemination von der Lunge in Leber und Milz. Im Gegensatz dazu konnte ein spezifisch gegen K2-Kapselpolysaccharid (K2-KPS) von K. pneumoniae gerichteter monoklonaler Antikörper signifikant die Vermehrung der Bakterien in Lunge, Leber und Milz reduzieren. Die Blockierung von TNF?? durch Pentoxifyllin hingegen verzögerte die Letalität nach Induktion der Pneumonie, verhinderte sie jedoch nicht. In vitro konnte hier nachgewiesen werden, daß G-CSF spezifisch an K. pneumoniae bindet und daß diese Bindung an mehrere Proteine mit einem Molekulargewicht von 41, 25 und 21 kDa erfolgt. Die Bindung von G-CSF an K. pneumoniae führte zu einer signifikant erhöhten Produktion des wichtigsten Virulenzfaktors, K2-KPS. Dies verminderte in vitro signifikant eine Phagozytose der Bakterien durch neutrophile Granulozyten. Damit gelang es zum ersten Mal, die Bindung von G-CSF an ein gram-negatives Bakterium, K. pneumoniae, nachzuweisen und zu zeigen, daß diese Bindung in vitro zu einer erhöhten Produktion des wichtigsten Virulenzfaktors und in vivo zur Verschlechterung einer experimentellen Pneumonie durch erhöhte bakterielle Disseminierung bei prophylaktischer Gabe von G-CSF vor Infektion führt. Die weitere Untersuchung dieser Phänomene hinsichtlich einer möglichen Bindung von G-CSF auch an andere Bakterien könnte zu einer differenzierten supportiven Therapie bakterieller Infektionen mit G-CSF in nicht neutropenischen Patienten führen. / Besides its well-established effects on granulocytopoiesis, granulocyte colony-stimulating factor (G-CSF) has been shown to have direct effects on the recruitment and bactericidal ability of neutrophils, resulting in improved survival of experimentally infected animals. The effect of G-CSF on the course of experimental pneumonia induced by Klebsiella pneumoniae was studied. Using a highly reproducible murine model, the paradoxical finding that mortality from infection was significantly increased when animals received G-CSF before induction of pneumonia could be demonstrated. Administration of G-CSF promoted replication of bacteria in the liver and spleen, thus indicating an impairment rather than an enhancement of antibacterial mechanisms. By contrast, a monoclonal antibody against Klebsiella K2 capsule significantly reduced bacterial multiplication in the lung, liver, and spleen, and abrogated the increased mortality caused by G-CSF. Blocking of TNF-? with pentoxifylline, however, could not prevent increased mortality caused by G-CSF. In vitro studies showed a direct effect of G-CSF on K pneumoniae resulting in inreased capsular polysaccharide (CPS) production. When bacteria were coincubated with therapeutically achievable concentrations of G-CSF, phagocytic uptake and killing by neutrophils was impaired. Western blot analysis showed three binding sites of G-CSF to K pneumoniae. Thus, in this model, the direct effect of G-CSF on a bacterial virulence factor, CPS production, outweighed any beneficial effect of G-CSF on recruitment and stimulation of leukocytes. Further investigations of possible binding of G-CSF to other bacteria might influence a differentiated supportive therapy of bacterial infections in non-neutropenic patients with this growth factor.
26

Impact du G-CSF sur le phénotype et les fonctions des cellules NK dans le cadre d’une immunothérapie post-allogreffe de cellules souches hématopoïétiques / Impaired functions and proliferation of NK cells from patient G-CSF mobilized leukapheresis

Xiong, Yu 27 July 2016 (has links)
Les cellules Natural Killer (NK) sont capables de lyser les cellules tumorales sans la nécessité de reconnaitre un antigène tumoral spécifique. Cette propriété leur confère un avantage par rapport aux lymphocytes T et les rend intéressantes à utiliser en tant que cellules effectrices pour l’immunothérapie adoptive. A ce jour, le potentiel thérapeutique des cellules NK n’a pas été complétement exploré notamment dans le contexte du traitement de la rechute post-allogreffe de cellules souches hématopoïétiques. Actuellement, les patients en rechute post-greffe sont traités avec des injections de lymphocytes du donneur (DLI) parfois issues de petites fractions du greffon de cellules souches hématopoïétiques congelées. Les cellules souches périphériques étant fréquemment utilisées comme source de cellules souches et parfois utilisées comme DLI, nous avons souhaité évaluer l’impact du G-CSF sur le phénotype et les fonctions des cellules NK présentes dans ces fractions. Dans cet objectif, nous avons comparé différentes sources de cellules NK isolées à partir de sang de donneurs sains, de sang mobilisé de donneurs sains ou de patients et observé l’évolution des différentes sous-populations de cellules NK issues de ces prélèvements au décours d’une expansion en présence d’IL-15. Nos résultats ont montré que l’administration de G-CSF diminuait la proportion de cellules NK CD56brightCD16+ au profit d’une population CD16-, diminuait la prolifération des cellules NK lors de l’expansion en culture, et modifiait les propriétés fonctionnelles des cellules NK. / The ability of natural killer (NK) cells to kill tumor cells without the need to recognize a tumor-specific antigen provides advantages over T cells and makes them appealing for a use as effectors for adoptive immunotherapy. However, the full therapeutic potential of NK cell-based immunotherapy has not been fully investigated in the context of leukemic relapse after hematopoietic stem cell transplantation. Today, patients relapsing after hematopoietic stem cell transplantation are often treated with donor lymphocyte infusion (DLI) based on small cell fractions frozen at the time of the stem cell transplantation. Since peripheral blood stem cells are increasingly used as stem cell source and as source of cells for DLI, we aimed to evaluate the impact of G-SCF mobilization on NK cell phenotype and functions. Therefore, we compared the expansion capacity, the phenotype and the function of NK cells from blood for healthy donors, from allogeneic HSCT healthy donors or from autologous HSCT from patients. We also determine the impact of G-CSF on NK cell subset repartition before and after expansion in presence of IL-15. Our results showed that G-CSF administration to patients decreases CD56brightCD16+ NK cell population, proliferation and function. Overcoming this impairment in lymphoid capacity may be important to facilitate post-transplant immunotherapy.
27

The role of βc subunit phosphorylation in the functioning of the GM-CSF/IL-3/IL-5 receptors.

Winnall, Wendy January 2008 (has links)
The cytokines GM-CSF, IL-3 and IL-5 are central regulators of haemopoietic cell functions and are pivotal in the regulation of haemopoiesis and inflammatory responses of myeloid cells. In particular, these cytokines have been shown to perform essential functions in host defence against foreign pathogens through their ability to regulate innate immune responses in myeloid cells. As key regulators of such important processes, these cytokines play an important role in human inflammatory pathologies such as rheumatoid arthritis, asthma, multiple sclerosis and psoriasis as well as a number of leukemias such as JML and CMML. GM-CSF, IL-3 and IL-5 signal through receptors containing α subunits specific to each cytokine and a common β subunit (βc). Cytokine stimulation leads to tyrosine phosphorylation of the βc and promotes specific responses such as proliferation, survival and activation of haemopoietic cells. Mouse knockout studies identified a key function of these cytokines in the activation of effector functions of myeloid cells, including production of reactive oxygen species (ROS) and phagocytosis. These earlier studies provide a link between cytokine signalling and inflammation, but the molecular mechanisms by which βc activation regulates effector cell functions, and the receptor motifs involved, are unknown. The aim of this thesis was to address two broad questions with regard to βc signalling: (1) Does βc regulate specific cellular responses by phosphotyrosine-independent mechanisms? (2) What are the molecular mechanisms by which βc initiates signalling to promote specific biological responses such as activation of effector cell functions? To address the first question, we have focussed on Serine 585, a potential 14-3-3 binding site which lies in the cytoplasmic potion of huβc. Out results show that the mutation huβc S585G disrupted the interaction of 14-3-3ζ with βc, whilst not affecting receptor tyrosine phosphorylation. Both mouse and human βc were shown to interact with 14-3-3 proteins, indicating that this interaction is conserved between these species. Significantly, a huβc S585G mutant was unable to promote haemopoietic cell survival in response to IL-3. These results identify a new mechanism by which cytokine receptors are able to couple to downstream signalling pathways that regulate cell survival. An approach was developed and optimised to analyse specific GM-CSF-mediated responses in monocytes/macrophages expressing wildtype or mutant huβc, (including huβc S585G that was defective in regulating survival). Bone marrow-derived muβc -/-;muβIL-3 -/- monocytes/macrophages were retrovirally transduced with constructs expressing wildtype or mutant huβc, along with huGMRα, then purified by FACS. Two assays were established to measure effector functions in the transduced monocyte/macrophages; (1) a flow cytometry assay for ROS production, and (2) an assay for phagocytosis. The capacity for GM-CSF to prime (i.e. enhance effector functions) ROS production and phagocytosis was investigated in huGMRα-transduced monocytes/macrophages. Our results have identified two key residues in the cytoplasmic domain of βc subunit: Tyrosine 577 (required for huβc interaction with the adaptor protein Shc) and serine 585 (required for 14-3-3 association), that are essential for the ability of GM-CSF to regulate key effector functions in monocytes/macrophages. These novel findings are significant in that they establish a molecular link between the GM-CSF/IL-3/IL-5 receptor and the regulation of both haemopoietic cell survival and inflammatory responses, and therefore have important implications in our understanding of inflammatory diseases such as rheumatoid arthritis and asthma. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1317007 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2008
28

Neuroprotective effects of granulocyte-colony stimulating factor in a mice stroke model

Chan, Chu-fung., 陳柱峰. January 2007 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
29

Use of Recombinant Human Granulocyte Colony Stimulating Factor as an Adjunct in Antifungal Chemotherapy in Various Animal Model Systems

Farrell, Lindi 01 May 1995 (has links)
The growing neutropenic patient population provides an ideal target for opportunistic fungal infections. Several effective antifungal drugs are toxic at high doses and contraindicated for long-term treatment. Recombinant human granulocyte colony stimulating factor (rhG-CSF) has been shown to increase neutrophilic numbers and functions, thus providing enhanced host defense. Improved efficacy by using rhG-CSF in conjunction with various antifungal agents was the primary focus of these studies. Use of rhG-CSF in a murine model of vaginal candidiasis did not reduce vaginal colony counts, or improve vaginal histophathology scores. Administration of rhG-CSF in a murine model of pulmonary aspergillosis improved survival, clinical signs, and gross pathology and histophathology scores of the lungs, and increased weight gain. The rhG-CSF was not shown to be an effective therapeutic treatment in this model of vaginal candidiasis. The rhG-CSF was, however, an effective prophylactic treatment in this model of pulmonary aspergillosis.
30

Structure-junction studies on human granulocyte-macrophage colony-stimulating factor / Timothy Robert Hercus.

Hercus, Timothy Robert January 1994 (has links)
Copies of author's previously published articles inserted. / Includes bibliographical references. / vi, 135, [109] leaves, [23] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Studies the structure-function properties of the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to generate molecules with novel biological properties. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1995

Page generated in 0.0814 seconds