371 |
Carbon Based Membranes for Molecular Separations / 炭素素材を基調とする膜の合成及び分子分離特性の研究HUANG, GUOJI 25 January 2021 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22895号 / 工博第4792号 / 新制||工||1749(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 SIVANIAH Easan, 教授 田中 庸裕, 教授 今堀 博 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
372 |
Příprava a charakterizace polymerních kompozitních systémů s přídavkem grafenu / Preparation and characterization of graphene/polymer compositesZálešáková, Romana January 2018 (has links)
The aim of the master’s thesis is study of polymer composite system with the addition of graphite, production of test specimen and determination of their mechanical and thermal properties. The theoretical part deals with graphene, its structure, preparation and properties. Subsequently, it deals with functionalization and derivates and nanocomposites polymers with the addition of graphene are generally analyzed. The experimental deals with the preparation of selected specimens. Tensile and laternal tests and DMA were used for study.
|
373 |
Inquiry of Graphene Electronic FabricationGreene, John Rausch 01 September 2016 (has links)
Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in devices burning and additional oxidation of the gate contacts that prevents good electrical contact to the gates. Zero bias testing shows that the graphene oxide resistance decreases after thermal reduction, proving that thermal reduction of the devices occurs. Testing confirms a fabrication process producing graphene electronics; however, revision of processing steps, especially thermal reduction, should greatly improve the yield and functionality of the devices.
|
374 |
CVD Synthesis and Characterization of 3D Shaped 3D Graphene (3D2G)Kondapalli, Vamsi Krishna Reddy January 2021 (has links)
No description available.
|
375 |
Heterogeneous Graphene Nanoribbon-CMOS Multi-State Volatile Random Access Memory FabricKhasanvis, Santosh 01 January 2012 (has links) (PDF)
CMOS SRAM area scaling is slowing down due to several challenges faced by transistors at nanoscale such as increased leakage. This calls for new concepts and technologies to overcome CMOS scaling limitations. In this thesis, we propose a multi-state memory to store multiple bits in a single cell, enabled by graphene and graphene nanoribbon crossbar devices (xGNR). This could provide a new dimension for scaling. We present a new multi-state volatile memory fabric called Graphene Nanoribbon Tunneling Random Access Memory (GNTRAM) featuring a heterogeneous integration between graphene and CMOS. A latch based on the xGNR devices is used as the memory element which exhibits 3 stable states. We propose binary and ternary GNTRAM and compare them with respect to 16nm CMOS SRAM and 3T DRAM. Ternary GNTRAM (1.58 bits/cell) shows up to 1.77x density-per-bit benefit over CMOS SRAMs and 1.42x benefit over 3T DRAM in 16nm technology node. Ternary GNTRAM is also up to 1196x more power-efficient per bit against high-performance CMOS SRAMs during stand-by.
To enable further scaling, we explore two approaches to increase the number of bits per cell. We propose quaternary GNTRAM (2 bits/cell) using these approaches and extensively benchmark these designs. The first uses additional xGNR devices in the latch to achieve 4 stable states and the quaternary memory shows up to 2.27x density benefit vs. 16nm CMOS SRAMs and 1.8x vs. 3T DRAM. It has comparable read performance in addition to being power-efficient, up to 1.32x during active period and 818x during stand-by against high performance SRAMs. However, the need for relatively high-voltage operation may ultimately limit this scaling approach. An alternative approach is also explored by increasing the stub length in the xGNR devices, which allows for storing 2 bits per cell without requiring an increased operating voltage. This approach for quaternary GNTRAM shows higher benefits in terms of power, specifically up to 4.67x in terms of active power and 3498x during stand-by against high-performance SRAMs.
Multi-bit GNTRAM has the potential to realize high-density low-power nanoscale memories. Further improvements may be possible by using graphene more extensively, as graphene transistors become available in future.
|
376 |
Investigation on the Mechanical, Microstructural, and Electrical Properties of Graphene Oxide-Cement CompositeAl Muhit, Baig Abdullah 01 January 2015 (has links)
Nanotechnology refers to the use of the materials or particles ranging from a few nanometers (nm) to 100 nanometers (nm) in a wide range of applications. Use of nanomaterials in cement composite to enhance the mechanical properties, fracture toughness and other functionalities has been studied for decades. In this regard, one of the carbon-based nanomaterials, Graphene Oxide (GO), has received attentions from researchers for its superior mechanical properties (e.g. tensile strength, yield strength, and Young's modulus). Although GO is not lucrative in increasing electrical conductivity (EC) of cement paste compared to that of graphene- another derivative of GO, reduced graphene oxide (rGO), might be a solution to increase EC. Another derivative of GO is the solution to the problem. In this research, the compressive strength and flexural strength of GO-cement composite (GOCC) and rGO-cement composite (rGOCC) have been investigated with 0.01% and 0.05% GO and rGO content. GOCC-0.05% showed 27% increase in compressive strength compared to the control cement paste after 28 days (d) of hydration. GOCC-0.01% showed only 3.4% increase in compressive strength compared to the control. rGOCC-0.05% showed 21% increase in compressive strength and 15.5% increase in Modulus of Rupture (MOR) compared to the control cement paste after 28 d of hydration. On the other hand, rGOCC-0.01% showed 7% increase in compressive strength and 0.35% increase in MOR after 28 d. GOCC-0.05% showed increasing trends in compressive strength after 28 d indicating continuation of hydration. Similarly, rGOCC-0.05% also showed increasing trends in compressive and flexural strength after 28 d, possibly due to the reason described earlier. Microstructural investigation on GOCC-0.05% and GOCC-0.01% by X-ray Diffraction (XRD) illustrated that the crystallite sizes of tobermorite-Å and jennite, which are mineralogical counterpart of disordered Calcium-Silicate-Hydrate (C-S-H), increases from 3 d to 28 d, representing the crystallite growth due to continued hydration. However, the crystallite size of GOCC-0.05% was smaller than that of GOCC-0.01% at both 3 d and 28 d, indicating finer nucleated grains. According to Hall-Petch equation, mechanical strength increases with decreasing particle size. Finer particles or grains can increase the strength in cement composites in several other ways: (1) GO acted as heterogeneous nucleation sites because of reactive functional groups. Activation energy was decreased by these "defects" in the cement paste, and consequently, numerous nuclei of C-S-H. with high surface area were formed, (2) because of finer grains, cracks are forced to move along a tortuous path, which makes the structure difficult to fail, and strength increased consequently (3) Finer grains of GOCC-0.05% created compacted hydration products decreasing porosity which can indirectly increase the strength. The above reasons, separately or in conjunction, might increase the strength of GOCC-0.05% and proved that GO is responsible for increasing heterogeneous nucleation sites during cement hydration. Early age hydration (EAH) characteristics were investigated for rGOCC specimens with 0.1% and 0.5% rGO content. Scanning Electron Microscope (SEM), Energy Dispersive X-ray analysis (EDX), and X-ray Diffraction (XRD) were employed to study the EAH characteristics. SEM/EDX, and XRD analysis were performed after 15 min, 1 h, 3 h and 24 h of hydration. (EAH) study on rGOCC-0.1% showed that at 15 min hydration, numerous precipitates of, possibly, C-S-H formed along the grain boundary (GB) of unhydrated cement grains. This served as visual confirmation of Thomas and Scherer's Boundary Nucleation and Growth (BNG) model that hydration of cement grains was initiated by the short burst of nucleation of C-S-H embryos along GB. EDX on rGOCC-0.1% and rGOCC-0.5% showed that Ca/Si ratio in C-S-H was ~2.0. This finding indicated that C-S-H structure in this study was concurrent with that of impure jennite. XRD analysis also evidently showed that jennite was present, possibly possessing a short range ordered (SRO) structure, referring to local crystalline structure in a very short area. After consulting Chen's work, it would be appropriate to say that C-S-H found in this study resembled more as C-S-H (II), which is disordered jennite. It was also observed that as expected with cement with nanomaterials, with continuing hydration, pore spaces were filled with hydration products such as C-S-H, ettringite, CH, sulfoaluminates etc,. Lastly, Electrical resistivity (ER) testing on 9 sets of rGOCC specimens was conducted. The specimen includes 0.5%, 1%, 5% rGO content, and the control conditioned in both oven dry (OD) and saturated surface dry (SSD). ER increased with the increase of rGO content from 0.5% and 1% compared to that of the control. However, the ER of rGOCC-5% was significantly decreased, showing 93% reduction compared to the control, which can be interpreted as a threshold value for sensing applications to be explored. As expected, large reduction of ER value occurred on the specimens with the SSD condition. This reduction can be attributed to the ionic conduction though the pore solution of the composites. As the rGO content increased, so did the potential nucleation sites for hydration (as can be seen in SEM images), which might block the number of contact points among the rGO, resulting in low conduction and high resistivity. However, as rGO content increased to 5%, the contact areas/points increased to a degree that could trump the nucleation seeding sites, resulting in decreased ER. The ER measured with the rGOCC specimens was comparable to that of cement composites incorporating carbon fibers (CF), and steel fibers, but higher content of rGO are required to have a similar ER range of those fiber cement composites. This might be due to smaller sizes of rGO sheets and lower aspect ratio compared to other nanofibers causing drastic reduction of electron tunneling mechanism compared to other fibers.
|
377 |
Graphene Oxide Reinforcement in Plasma Sprayed Nickel-5%Aluminum CoatingsWard, David 01 January 2014 (has links)
Metallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic plasma sprayed coatings. The powder system chosen for this research is Nickel-5Aluminum since it is a common coating for such repairs. The greatest challenge was retaining graphene oxide, which combusts at 400°C, while melting the Nickel above 1450°C using a high temperature plasma plume. Graphene oxide was successfully retained in the coatings using either of two configurations: (1) Injecting the graphene oxide powder via solution suspension separately from the metal powder, or (2) Installing a shroud on the front of the plasma gun and backfilling with Argon to inhibit combustion. The uniquely designed solution suspension configuration resulted in a higher deposition efficiency of graphene oxide while the inert shroud configuration had a more homogeneous distribution and retention of graphene oxide in the coatings. The best overall coating was achieved using the inert shroud configuration using a powder mixture containing 2% weight Edge Functionalized Graphene Oxide. Vickers microhardness increased 46% and tensile adhesion strength increased 26% over control samples. This is possible due to the mechanisms of dislocation strengthening and stress transfer previously reported in graphene oxide reinforced Aluminum composites formed by flake powder metallurgy. It was also observed that the energy released by the combustion of graphene oxide helps to uniformly melt the Nickel particles and improve the coating microstructure, allowing for more forgiving spray parameters. The methods developed and results attained in this research open opportunities for graphene oxide to be added as inexpensive reinforcements to other metallic compositions for widespread use in metal matrix composite manufacturing.
|
378 |
Properties and Use of Graphene Oxide in the Mitigation of Bacterial Contamination in Aviation FuelBrown, Nicholas A. 21 August 2012 (has links)
No description available.
|
379 |
ORGANIC/INORGANIC HYBRID COATINGS FOR ANTICORROSION APPLICATIONSALRASHED, MAHER M. January 2017 (has links)
No description available.
|
380 |
Antimicrobial Properties of Graphite and Coal-Derived Graphene Oxides as an Advanced Coating for Titanium ImplantsJankus, Daniel James 27 April 2021 (has links)
Prosthetic joint infection (PJI) poses a significant risk to implanted patients, requiring multiple surgeries with high rates of reinfection. The primary cause of such infections is otherwise innocuous bacterial species present on the skin that have survived sterilization protocols. Antibiotic drugs have significantly reduced efficacy due to the lack of vasculature in the newly implanted site, allowing microbes to form biofilms with even greater resistance. Graphene oxide (GO) is known to have good biocompatibility while providing drugless antimicrobial properties. The focus of this study is on the development and characterization of a robust coating for titanium alloy implants to promote bone regeneration while inhibiting microbial biofilm adhesion to the implant surface. The novelty of this study is the use of proprietary coal-derived graphene oxide (c-GO) in a biomedical application. c-GO has been demonstrated to have a greater number of functional oxygen groups to promote cell adhesion, while also maintaining thinner layers than possible with graphite exfoliation methods. As an alternative to powerful antimicrobial drugs, it was hypothesized that an advanced coating of graphene-oxide would provide a defensive, passively antimicrobial layer to a titanium implant. While GO is typically quite expensive, the newly developed process provides an economical and environmentally friendly method of producing GO from coal (c-GO). The result is a coating that is inexpensive and capable of halving the biofilm formation of MRSA on titanium-alloy surgical screws in addition to providing improved bone cell adhesion and hard tissue compatibility. / Master of Science / Any time a patient receives implantation surgery, there is a chance of microbes entering the body. These are typically naturally occurring skin flora, harmless but opportunistic. On the surface of implants within the body, these bacteria can form colonies called biofilms, leading to severe and potentially deadly infections, called prosthetic joint infection (PJI). PJI often requires multiple surgeries to remedy, but rates of reinfection are relatively high. As with any surgery, patients are given antibiotic drugs, but implants to not receive blood flow as the body normally would, reducing the effectiveness of antibiotics. Once biofilms are formed, the bacteria become even hardier and resistant even to powerful antibiotics. Graphene oxide (GO) is a carbon material known to have good biocompatibility (i.e., non-toxic) while providing antimicrobial properties. The focus of this study is on the development and characterization of a robust coating for titanium alloy implants to promote bone healing while reducing microbial biofilm colonization on the implant's surface. The novelty of this study is the use of proprietary coal-derived graphene oxide (c-GO) in a biomedical application. c-GO has been demonstrated to have a different chemical makeup than graphite-derived GO, which may improve its efficacy as an antimicrobial coating. As an alternative to powerful antimicrobial drugs, it was hypothesized that a coating of graphene-oxide would provide a defensive, passively antimicrobial layer to a titanium implant. While GO is typically quite expensive, the newly developed one-pot process provides an economical and environmentally friendly method of producing GO from coal (c-GO). The result is a coating that is inexpensive and capable of halving the biofilm formation of MRSA on titanium-alloy surgical screws in addition to providing improved bone cell adhesion and hard tissue compatibility.
|
Page generated in 0.0366 seconds