• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 832
  • 204
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1731
  • 298
  • 288
  • 281
  • 227
  • 211
  • 203
  • 186
  • 174
  • 146
  • 140
  • 127
  • 120
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Modeling and optimization approaches for benchmarking emerging on-chip and off-chip interconnect technologies

Kumar, Vachan 07 January 2016 (has links)
Modeling approaches are developed to optimize emerging on-chip and off-chip electrical interconnect technologies and benchmark them against conventional technologies. While transistor scaling results in an improvement in power and performance, interconnect scaling results in a degradation in performance and electromigration reliability. Although graphene potentially has superior transport properties compared to copper, it is shown that several technology improvements like smooth edges, edge doping, good contacts, and good substrates are essential for graphene to outperform copper in high performance on-chip interconnect applications. However, for low power applications, the low capacitance of graphene results in 31\% energy savings compared to copper interconnects, for a fixed performance. Further, for characterization of the circuit parameters of multi-layer graphene, multi-conductor transmission line models that account for an alignment margin and finite width of the contact are developed. Although it is essential to push for an improvement in chip performance by improving on-chip interconnects, devices, and architectures, the system level performance can get severely limited by the bandwidth of off-chip interconnects. As a result, three dimensional integration and airgap interconnects are studied as potential replacements for conventional off-chip interconnects. The key parameters that limit the performance of a 3D IC are identified as the Through Silicon Via (TSV) capacitance, driver resistance, and on-chip wire resistance on the driver side. Further, the impact of on-chip wires on the performance of 3D ICs is shown to be more pronounced at advanced technology nodes and when the TSV diameter is scaled down. Airgap interconnects are shown to improve aggregate bandwidth by 3x to 5x for backplane and Printed Circuit Board (PCB) links, and by 2x for silicon interposer links, at comparable energy consumption.
402

Superlattice electrodynamics as a source of Terahertz radiation

Dakers, Paul A. January 2012 (has links)
Charge-carriers propagating in superlattices exhibit the related phenomena known as negative differential conductivity and Bloch oscillation. This behaviour may be utilised for the generation of tunable electromagnetic radiation. In this work, the dependence of the drift velocity and displacement of charge-carriers on external, applied electric fields is investigated. The theory is extended to incorporate a different miniband structure, with the aim of modelling a superlattice made from graphene. I predict that, for a chosen set of electric field parameters, a semiconductor superlattice will emit radiation in the terahertz range. I create an original mathematical framework within which to calculate the charge-carrier behaviour in a triangular miniband structure, while incorporating an arbitrary variable to account for the effects of corrugation or disorder, and predict the appearance of conductivity multistability. This may be of interest to further work done on the use of graphene for superlattice device construction.
403

Electrical Characterizationon Commercially Available Chemical Vapor Deposition (CVD) Graphene

Anttila-Eriksson, Mikael January 2016 (has links)
Field-effect transistors (FET) based on graphene as channel has extraordinaryproperties in terms of charge mobility, charge carrier density etc. However, there aremany challenges to graphene based FET due to the fact graphene is a monolayer ofatoms in 2-dimentional space that is strongly influenced by the operating conditions.One issue is that the Dirac point, or K-point, shifts to higher gate voltage whengraphene is exposed to atmosphere. In this study graphene field-effect transistors(GFET) based on commercially available CVD graphene are electrically characterizedthrough field effect gated measurements. The Dirac point is initially unobservable andlocated at higher gate voltages (>+42 V), indicating high p-doping in graphene.Different treatments are tried to enhance the properties of GFET devices, such astransconductance, mobility and a decrease of the Dirac point to lower voltages, thatincludes current annealing, vacuum annealing, hot plate annealing, ionized water bathand UV-ozone cleaning. Vacuum annealing and annealing on a hot plate affect thegated response; they might have decreased the overall p-doping, but also introducedDirac points and non-linear features. These are thought to be explained by localp-doping of the graphene under the electrodes. Thus the Dirac point of CVDgraphene is still at higher gate voltages. Finally, the charge carrier mobility decreasedin all treatments except current – and hot plate annealing, and it is also observed that charge carrier mobilities after fabrication are lower than the manufacturer estimatesfor raw graphene on SiO2/Si substrate.
404

Hydrodynamic Modeling of Dielectric Response in Graphene and Carbon Nanotubes

Zuloaga, Jorge January 2006 (has links)
This thesis studies two important carbon structures, graphene and carbon nanotubes, with the purpose of understanding how their three-dimensional electron density distribution affects the way fast ions interact with them. <br /><br /> A brief introduction to research in pure carbon structures is made. We then use different models to calculate the equilibrium electron density distribution in graphene and carbon nanotubes. <br /><br /> In the second part of the thesis we investigate fast ions moving parallel to a graphene sheet and experiencing forces due to the dynamic polarization of carbon valence electrons. Using the three-dimensional electron density distribution of graphene, we calculate the force directly opposing the ion's motion (stopping force), as well as the force which bends the ion's trajectory towards the sheet (image force). It is our purpose to compare these results with those based on a two-dimensional hydrodynamic model of graphene, which approximates the electron distribution of graphene by a charged fluid confined to the two-dimensional plane of the sheet. <br /><br /> The results obtained for interactions of ions with a single graphene sheet should be useful for a further analysis of ion channeling through carbon nanostructures.
405

Electrical properties of carbon structures : carbon nanotubes and graphene nanoribbons

Kan, Zhe 14 December 2013 (has links)
Graphene is a one-atom thick sheet of graphite which made of carbon atoms arranged in a hexagonal lattice. Carbon nanotubes and graphene nanoribbons can be viewed as single molecules in nanometer scale. Carbon nanotubes are usually labeled in terms of the chiral vectors which are also the directions that graphene sheets are rolled up. Due to their small scale and special structures, carbon nanotubes present interesting electrical, optical, mechanical, thermal, and toxic properties. Graphene nanoribbons can be viewed as strips cut from infinite graphene. Graphene nanoribbons can be either metallic or semiconducting depending on their edge structures. These are robust materials with excellent electrical conduction properties and have the potential for device applications. In this research project, we present a theoretical study of electrical properties of the carbon structures. Electronic band structures, density of states, and conductance are calculated. The theoretical models include a tight-binding model, a Green’s function methodology, and the Landauer formalism. We have investigated the effects of vacancy and weak disorder on the conductance of zigzag carbon nanoribbons. The resulting local density of states (LDOS) and conductance bands show that electron transport has interesting behavior in the presence of any disorder. In general, the presence of any disorder in the GNRs causes a decrease in conductance. In the presence of a vacancy at the edge site, a maximum decrease in conductance has been observed which is due to the presence of quasi-localized states. / Theory -- Band structure and density of states of carbon nanotubes -- Band structure and density of states of graphene nanoribbons -- Quantum conductance of zigzag graphene nanoribbons -- Quantum conductance of a zigzag graphene nanoribbon with defects. / Department of Physics and Astronomy
406

Chemical modification of graphene

Withers, Freddie January 2012 (has links)
In this thesis investigations into chemically modified graphene structures are presented. Chemical functionalization of graphene is the chemical attachment of molecules or atoms to the graphene surface via covalent or Van der Waals bonds, this process offers a unique way to tailor the properties of graphene to make it useful for a wide range of device applications. One type of chemical functionalization presented in this thesis is fluorination of graphene which is the covalent attachment of fluorine to the carbon atoms of graphene and the resultant material is fluorographene which is a wide band-gap semiconductor. For low fluorine coverage the low temperature electron transport is through localized states due to the presence of disorder induced sub-gap states. For high fluorine coverage the electron transport can be explained by a lightly doped semiconductor model where transport is through thermal activation across an energy gap between an impurity and conduction bands. On the other hand, at low temperatures the disorder induced sub-gap density of states dominates the electrical properties, and the conduction takes place via hopping through these localized states. In this thesis it is also shown that electron beam irradiation can be used to tune the coverage of fluorine adatoms and therefore control energy gap between the impurity and conduction bands. Futhermore, electron beam irradiation also offers a valuable way to pattern conductive structures in fluorinated graphene \textit{via} the irradiation-induced dissociation of fluorine from the fluorinated graphene. This technique can be extended to the patterning of semiconducting nano-ribbons in fluorinated graphene where the spatial localization of electrons is just a few nm. The second type of chemical functionalization presented in this thesis is the intercalation of few layer graphene with ferric chloride which greatly enhances the electrical conductivity of few layer graphene materials making them the best known transparent conductors.
407

Surface Plasmon Hybridization in Novel Plasmonic Phenomena

Ramirez, Francisco 01 May 2017 (has links)
We explore the effects of surface plasmon hybridization in graphene nanostructures and silver nanoparticles as applied to novel plasmonic phenomena. The analysis is based on the theory of surface plasmon hybridization under the boundary charges method. This method, which is based in the electrostatic approximation, has been largely used to predict the resonant frequencies in strongly coupled nanoparticle clusters. Here, we extend this formalism to analyze novel plasmonic phenomena such as the blueshift of modes in graphene plasmonics, near-field radiation, thermal transport and plasmon-induced hot carrier generation in silver nanoparticles. Furthermore, we develop analytical solutions for graphene nanodisks and metallic spheres that allow for fast and accurate modeling. The analytic models provide the basis to derive a large number of results, including prediction of hybrid eigenmodes and bandstructures, far-field response, and near-field response under thermally induced fluctuations. We predict that the strong near-filed coupling in graphene nanodisk stacks can induce a blueshift in the resonant frequencies up to the near-infrared part of the spectrum. We find that the strong near-filed coupling between disks can also lead to large values of radiative thermal conductance when thermally induced fluctuations are included. In this regard, an enhancement over the blackbody limit of up to two and four orders of magnitude was observed for co-planar and co-axial disk configurations. The strong coupling between coplanar disks was also explored for the development of plasmonic waveguides by considering long co-planar disk arrays. It was observed that the array posseses great potential for plasmonic waveguiding, with a strong degree of confinement for disks smaller than 200 nm. Thermal activation of the guided modes showed a thermal conductivity of up to 4.5 W/m K and thermal diffusivity of up to 1:4 x 10-3 m2/s. The large values of thermal diffusivity suggest the potential of graphene disk waveguides for thermotronic interconnects. The plasmon-induced hot carrier generation in silver nanosphere dimers was also studied. The modeling considered analytical solution for metallic nanospheres, from which the electrostatic potential of each sphere was obtained. Using these results, the hot carrier generation was explored under the basis of the Fermi golden rule. The results show a large number of hot carriers at the low frequency modes. This values exceed the number of generated hot carriers on a single sphere. The energy distribution of photogenerated electrons and holes showed a large energy gap that can be explored in photocatalysis and photovoltaic energy conversion.
408

Dynamics of Hydrogen Atoms Scattering from Surfaces

Jiang, Hongyan 07 December 2016 (has links)
No description available.
409

Laser Vaporization Controlled Condensation and Laser Irradiation in Solution for the Synthesis of Supported Nanoparticle Catalysts

Kisurin, Vitaly, Mr. 01 January 2016 (has links)
Solid catalyst supports of SiOx-RGO (Reduced Graphene Oxide) and UiO-67 (Universitet i Oslo) have been successfully synthesized and were loaded with palladium nanoparticles to test for a series of heterogeneous reactions. The SiOx/RGO catalysts were synthesized through laser ablation of silicon and graphite oxide micron powder and UiO-67 metal-organic framework (MOF) was synthesized through mixing of precursors with DMF/HCl solution and washing the resultant powder from impurities. The SiOx/RGO supports were later impregnated with palladium precursors which were then subject to Microwave Irradiation (MWI). The UiO-67 framework was impregnated with palladium precursors and was irradiated with pulsed Nd:YAG 532 nm laser and was purified through washing and centrifugation. The resulting catalyst supports were characterized with UV-Vis, FTIR, Raman, XRD and XPS techniques and the UiO-67 framework was subject to Brunauer-Emmet-Teller (BET) surface area measurements before and after the catalytic reactions. The catalytic activity of palladium nanoparticles supported on SiOx/RGO and UiO-67 framework was tested in carbon cross-coupling reactions of Suzuki-Miyaura, Sonogashira reactions and oxidation of benzyl alcohol respectively. The catalysts have demonstrated excellent performance and have yielded a promising future for the catalytic supports in the previously stated reactions.
410

Quantum confinement in low-dimensional Dirac materials

Downing, Charles Andrew January 2015 (has links)
This thesis is devoted to quantum confinement effects in low-dimensional Dirac materials. We propose a variety of schemes in which massless Dirac fermions, which are notoriously diffcult to manipulate, can be trapped in a bound state. Primarily we appeal for the use of external electromagnetic fields. As a consequence of this endeavor, we find several interesting condensed matter analogues to effects from relativistic quantum mechanics, as well as entirely new effects and a possible novel state of matter. For example, in our study of the effective Coulomb interaction in one dimension, we demonstrate how atomic collapse may arise in carbon nanotubes or graphene nanoribbons, and describe the critical importance of the size of the band gap. Meanwhile, inspired by groundbreaking experiments investigating the effects of strain, we propose how to confine the elusive charge carriers in so-called velocity barriers, which arise due to a spatially inhomogeneous Fermi velocity triggered by a strained lattice. We also present a new and beautiful quasi-exactly solvable model of quantum mechanics, showing the possibilities for confinement in magnetic quantum dots are not as stringent as previously thought. We also reveal that Klein tunnelling is not as pernicious as widely believed, as we show bound states can arise from purely electrostatic means at the Dirac point energy. Finally, we show from an analytical solution to the quasi-relativistic two-body problem, how an exotic same-particle paring can occur and speculate on its implications if found in the laboratory.

Page generated in 0.0707 seconds