• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of Hydrogen Atoms Scattering from Surfaces

Jiang, Hongyan 07 December 2016 (has links)
No description available.
2

Measuring, interpreting, and translating electron quasiparticle-phonon interactions on the surfaces of the topological insulators bismuth selenide and bismuth telluride

Howard, Colin 08 April 2016 (has links)
The following dissertation presents a comprehensive study of the interaction between Dirac fermion quasiparticles (DFQs) and surface phonons on the surfaces of the topological insulators Bi2Se3 and Bi2Te3. Inelastic helium atom surface scattering (HASS) spectroscopy and time of flight (TOF) techniques were used to measure the surface phonon dispersion of these materials along the two high-symmetry directions of the surface Brillouin zone (SBZ). Two anomalies common to both materials are exhibited in the experimental data. First, there is an absence of Rayleigh acoustic waves on the surface of these materials, pointing to weak coupling between the surface charge density and the surface acoustic phonon modes and potential applications for soundproofing technologies. Secondly, both materials exhibit an out-of-plane polarized optical phonon mode beginning at the SBZ center and dispersing to lower energy with increasing wave vector along both high-symmetry directions of the SBZ. This trend terminates in a V-shaped minimum at a wave vector corresponding to 2kF for each material, after which the dispersion resumes its upward trend. This phenomenon constitutes a strong Kohn anomaly and can be attributed to the interaction between the surface phonons and DFQs. To quantify the coupling between the optical phonons experiencing strong renormalization and the DFQs at the surface, a phenomenological model was constructed based within the random phase approximation. Fitting the theoretical model to the experimental data allowed for the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator encoded in the phonon self energy. This allowed, for the first time, calculation of phonon mode-specific quasiparticle-phonon coupling λⱱ(q) from experimental data. Additionally, an averaged coupling parameter was determined for both materials yielding ¯λ^Te ≈ 2 and ¯λ^Se ≈ 0.7. These values are significantly higher than those of typical metals, underscoring the strong coupling between optical surface phonons and DFQs in topological insulators. In an effort to connect experimental results obtained from phonon and photoemission spectroscopies, a computational process for taking coupling information from the phonon perspective and translating it to the DFQ perspective was derived. The procedure involves using information obtained from HASS measurements (namely the coupling matrix elements and optical phonon dispersion) as input to a Matsubara Green function formalism, from which one can obtain the real and imaginary parts of the DFQ self energy. With these at hand it is possible to calculate the DFQ spectral function and density of states, allowing for comparison with photoemission and scanning tunneling spectroscopies. The results set the necessary energy resolution and extraction methodology for calculating ¯λ from the DFQ perspective. Additionally, determining ¯λ from the calculated spectral functions yields results identical to those obtained from HASS, proving the self-consistency of the approach.
3

Streifende Streuung schneller Atome an Oberflächen von Metalloxid-Kristallen und ultradünnen Filmen

Blauth, David 18 March 2010 (has links)
Im Rahmen dieser Dissertation wurden Experimente zur Wechselwirkung von schnellen Atomen mit Oberflächen von Oxidkristallen, Metallkristallen und ultradünnen Oxidfilmen auf Metalloberflächen durchgeführt und modellhaft beschreiben. Die Experimente wurden im Regime der streifenden Streuung für Energien im keV-Bereich durchgeführt. Diese Streugeometrie bietet den Vorteil einer außerordentlich hohen Oberflächensensitivität und somit die Möglichkeit, die kristallographischen Eigenschaften der obersten Atomlage zu untersuchen. Darüber hinaus wurden Experimente zur Bestimmung des Energieverlustes der an den verschiedenen Oberflächen gestreuten Projektile und zur, durch diese Projektile induzierten, Elektronenemission durchgeführt. Die Anregungsenergie für die Elektronenemission und Exzitonen wurde an der Alumina/NiAl(110)- und der SiO2/Mo(112)- Oberfläche für die Streuung von He bestimmt. Durch die Bestimmung der Anzahl von emittierten Elektronen in Abhängigkeit des azimutalen Winkels konnten die Strukturen von obersten Lagen von Adsorbaten mit der Methode der Ionenstrahltriangulation bestimmt werden. / In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO2/Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation.
4

Translationsenergie-Spektroskopie elektronischer Wechselwirkungen bei streifender Streuung schneller Atome an Festkörperoberflächen

Lederer, Sven 08 September 2006 (has links)
In dieser Arbeit wird mit Hilfe der koinzidenten Messung des Energieverlusts gestreuter Projektile zusammen mit der Anzahl emittierter Elektronen pro Streuprozess die Wechselwirkung schneller Atome mit Metalloberflächen untersucht. Dabei wird insbesondere die streifende Streuung der Edelgasatome Helium, Neon und Argon an Al(110)-, Al(111)- und Cu(111)-Oberflächen betrachtet. In den ersten Kapiteln wird die Messmethode der streifenden Streuung, der verwendete experimentelle Aufbau sowie der Charakterisierung der untersuchten Metalloberflächen anhand ihrer geometrischen und elektronischen Eigenschaften erläutert. Nach einführenden Betrachtungen zu Energieverlust und Elektronenemission bei der streifenden Streuung von Heliumatomen erfolgt eine detaillierte Diskussion zum Schwellenverhalten der kinetischen Elektronenemission (KE). Dabei wird gezeigt, dass das Schwellenverhalten durch ein Modell basierend auf dem zentralen Stoss zwischen Projektil und Valenzelektronen beschrieben werden kann. Aus den Schwellengeschwindigkeiten werden Informationen über Elektronenimpulse und Elektronenpotentiale vor Metalloberflächen abgeleitet. Ferner wird die Streuung von Neon- und Argonatomen untersucht. Für das System Ne-Al(111) wird ab Senkrechtenergien von ca. 25 eV Elektronenpromotion beobachtet. KE unterhalb der klassischen Schwelle für die Streuung von Neon- und Argonatomen wird im Rahmen von zwei alternativen Modellen interpretiert: der Effekt der Impulsdichteverteilung der Elektronen vor der Oberfläche oder die gleichzeitige Anregung zweier benachbarter Elektronen mit anschließenden Auger-Zerfall. Abschließend die unterschiedlichen KE für axiales und planares Oberflächen-Channeling untersucht und interpretiert. / The kinetic electron emission (KE) in coincidence with the energy loss of noble gas atoms impinging on metal surfaces under grazing angles of incidence is studied. Results for scattering of helium, neon, and argon atoms from Al(111), Al(110), and Cu(111) are presented and discussed. In the first chapters the experimental technique of grazing scattering, the experimental setup, and a geometric and electronic characterization of the surfaces is described. General aspects of projectile energy loss and KE for grazing scattering of helium atoms are discussed. It is shown that the threshold behavior of the KE can be interpreted in terms of a simple model of binary-encounter between projectiles and valence electrons. From threshold velocities for KE electron momenta and potentials in front of the studied metal surfaces are derived. Then special features for the grazing scattering of neon and argon are discussed. For neon impinging on Al(111) with energies normal to the surface above 25 eV electron promotion was found to dominate the electron emission process. Sub-threshold KE for scattering of neon and argon atoms is interpreted by two models. The first one is based on the local electron momentum distribution in front of the surface. The second one involves correlated excitation of two conduction electrons well above the Fermi level with subsequent emission of an electron via Auger deexcitation. Furthermore an explanation for the different KE yields under axial and planar surface channeling conditions is provided.
5

Streuexperimente mit Wasserstoff- und Heliumstrahlen zur Untersuchung der Wechselwirkung von H2, N2 und C2H2 mit den (001)-Oberflächen von LiF, NaCl, KCl und MgO / Scattering experiments with molecular hydrogen and helium beams investigating the interactions of H2, N2 and C2H2 with the (001) surfaces of LiF, NaCl, KCl and MgO

Traeger, Franziska 01 February 2001 (has links)
No description available.
6

Bestimmung der atomaren Struktur ultradünner Schichten auf Festkörperoberflächen mittels streifender Atomstreuung

Seifert, Jan 05 September 2012 (has links)
In dieser Dissertation wird die Struktur von ultradünnen Schichten auf atomar ebenen Festkörperoberflächen durch die streifende Streuung von Atomen und Molekülen untersucht. Dabei werden Atome mit kinetischen Energien im keV-Bereich unter flachem Einfallswinkel von etwa 1° an der Oberfläche gestreut und mit einem ortsauflösenden Detektor nachgewiesen. Bei hinreichend kleinen Projektilenergien werden Beugungserscheinungen beobachtet, die durch Interferenz von Materiewellen erklärt werden können. Die Auswertung der Intensität der Beugungsreflexe ermöglicht die Bestimmung von Atompositionen. Wird die Probe azimutal verdreht, ändern sich die seitliche Ablenkung der Projektile und die Zahl der während des Streuprozesses an der Oberfläche emittierten Elektronen. Dies wird zur Identifikation von Richtungen mit dichtgepackten Atomketten genutzt und der Vergleich mit Trajektoriensimulationen gestattet Rückschlüsse auf die Atompositionen der obersten Lage. Beim System einer Atomlage SiO2/Mo(112) kann durch mehrere Messmethoden eindeutig zwischen zwei konkurrierenden Strukturmodellen unterschieden und die Atompositionen eines Modells mit hoher Genauigkeit bestätigt werden. Die Adsorption von Sauerstoff auf einer Mo(112)-Oberfläche wird detailliert studiert und für mehrere Überstrukturphasen werden Modelle aufgestellt. Für V2O3/Au(111) kann durch Triangulationsmessungen eine geringfügige Modifikation eines existierenden Strukturmodells abgeleitet werden. Auf einer Cu(001)-Oberfläche werden dünne, kristalline FeO und Fe3O4-Schichten präpariert und untersucht. Die Inkommensurabilität der quadratischen Substrat- und der hexagonalen Adsorbateinheitszelle führt zu komplexen LEED-Mustern, die durch Mehrfachstreuung erklärt werden können. Dies ist auch der Schlüssel zur Erklärung der Beugungsbilder bei Adsorbatstrukturen der chiralen Aminosäure Alanin auf Cu(110) und damit die Grundlage für die Aufstellung eines Strukturmodells für dieses System. / In this thesis the structure of ultrathin films on atomically flat crystal surfaces is investigated by means of grazing scattering of atoms and molecules. Atoms with kinetic energies in the keV regime are scattered from the surface under small angles of incidence of approximately 1° and are detected by means of a position-sensitive detector. For sufficiently small projectile energies diffraction phenomena are observed which can be explained by interference of matter waves. The analysis of the intensities of diffraction spots makes it possible to determine atomic positions. When the sample is rotated azimuthally the deflection of projectiles and the number of emitted electrons during the scattering process at the surface varies. This is used to identify directions with close-packed strings of atoms and comparison with trajectory simulations gives information on atomic positions of the topmost layer. For the system of one atomic layer of SiO2/Mo(112) it can be unambiguously distinguished between two competing structural models. The positions of atoms of one model are confirmed with high accuracy by the use of several methods. The adsorption of oxygen on a Mo(112) surface is studied in detail and for several superstructure phases models are proposed. For the surface of a V2O3 layer on a Au(111) substrate a slight modification of an existing structural model is derived by means of triangulation measurements. On a Cu(001) surface thin crystalline FeO and Fe3O4 films are grown and studied. The incommensurability of the quadratic substrate with the hexagonal adsorbate surface unit cell gives rise to complex pattern for low energy electron diffraction, which can be explained by multiple scattering. This is also the key to the explanation of diffraction images for adsorbate structures of the chiral amino acid alanine on Cu(110) and the basis for developing a structural model for this system.
7

Strukturuntersuchungen an Oxidkristalloberflächen mittels der streifenden Streuung schneller Atome

Meyer, Eric 19 February 2016 (has links)
Die Dissertation beschäftigt sich mit der Bestimmung der Oberflächenstruktur von Oxidkristallen. Die strukturelle Charakterisierung fand mittels der streifenden Streuung schneller Atome und Moleküle statt. Bei dieser Methode werden Atome oder Moleküle mit Energien im keV Bereich unter streifendem Einfall an einer Einkristalloberfläche gestreut. Sie werden unter axialer Gitterführung entlang niedrig-indizierter Kristallrichtungen gestreut und können mittels eines ortsauflösenden Detektors nachgewiesen werden. Bei hinreichend kleinen Energien werden Beugungserscheinungen beobachtet, die auf die Interferenz von Materiewellen zurückzuführen sind. Durch eine Analyse der Streuverteilung der Projektile, können Rückschlüsse auf das Wechselwirkungspotential und somit auf die Struktur der Oberfläche gezogen werden. Durch die Untersuchung der (100)- und (001)-Fläche konnten alle Gitterparameter des Ga2O3-Systems bestimmt werden. Die Messungen an der (100) Fläche lieferten Aufschluss über die Terminierung, für die ein alternatives Strukturmodell entwickelt wurde. Aufbauend auf der Entdeckung der longitudinalen Kohärenz bei der streifenden Streuung von Atomen an der Al2O3(11-20)-Fläche konnten die vorhandenen Messungen erweitert und ein effektives Auswerteprogramm entwickelt werden. Bei Messungen an der Al2O3(0001)-Fläche wurde ebenfalls das Auftreten einer longitudinalen Kohärenz beobachtet. Für beide Flächen wurden die jeweiligen Gitterparameter mit höchster Präzision bestimmt und die Intensitätsverteilung der Streubilder durch ein einfaches Modell beschrieben. Erstmalig in dieser Arbeitsgruppe konnte ein Wechselwirkungspotential für die Streuung von H2-Molekülen an einer KCl(001)-Fläche abgeleitet werden. Der im Experiment beobachtete drastische Unterschied in der Intensitätsmodulation der Beugungsreflexe mit der senkrecht-de Broglie Wellenlänge für gestreute Atome und Moleküle konnte mit Simulationen unter Verwendung des abgeleiteten Wechselwirkungspotentials erklärt werden. / This PhD thesis deals with the investigation of surface structures of oxide crystal surfaces. Therefore, the method of grazing scattering of fast atoms and molecules was applied. The projectiles are scattered with energies in the keV range under grazing incidence from a single crystal surface along low-indexed surface directions. They are recorded with a position sensitive detector. For sufficiently low energies diffraction patterns are observed that can be understood in terms of the interference of matter waves. By analyzing these patterns the interaction potential and in this manner the surface structure can be derived. The investigation of the (100) and (001) surface led to a determination of all lattice parameters of the Ga2O3 system so that it was possible to determine the termination of the (100) surface. An alternative structural model for this termination could be derived. After the discovery of a longithudinal coherence for the grazing scattering process on a Al2O3(11-20) surface, the existing measurements were expanded and an effective evaluation procedure was developed. In measurements on the Al2O3(0001) surface the longithudinal coherence was observed as well. For both surfaces, the lattice parameters could be determined with very high accuracy and the intensity distribution was described by a very simple model. For the first time in this working group the interaction potential for the scattering of H2 molecules from a KCl(001) surface could be deviated. The observed difference in the intensity distribution in dependence of the perpendicular de Broglie wavelength for scattered atoms and molecules could be explained by applying simulations using the deviated interaction potential.
8

Inelastic H-Atom scattering from ultra-thin films

Dorenkamp, Yvonne Jeannette 15 August 2018 (has links)
No description available.
9

High Resolution Scattering of He Atoms and D<sub>2</sub> Molecules from the LiF(001) Crystal Surface / Hochaufgelöste Streuung von Helium Atomen und Deuterium Molekülen an einer LiF(001) Oberfläche

Ekinci, Yasin 15 December 2003 (has links)
No description available.

Page generated in 0.0765 seconds