Spelling suggestions: "subject:"structure anda dynamics"" "subject:"structure ando dynamics""
1 |
Problems in helioseismologyThompson, Michael John January 1987 (has links)
No description available.
|
2 |
The Genesis of Ribosome Structure: A Tale of Two ProteinsWoolstenhulme, Christopher James 15 June 2009 (has links)
Living cells are dependent upon protein synthesis for virtually all cellular functions. The cellular machine responsible for protein synthesis, called the ribosome, is formed through the association of two unequally sized subunits, each composed of RNA and proteins. Proper assembly of each subunit is essential to ribosome function and therefore essential to the cellular life cycle. Previous studies focused on dissecting the assembly of the small ribosomal subunit (30S subunit) from E. coli have shown that 21 proteins sequentially assemble on the 16S rRNA at multiple nucleation sites. For the first time, we are able to monitor changes in the secondary and tertiary structure of the 16S rRNA upon the addition of single proteins during assembly by using time-dependent chemical probing. Results from these studies suggest that protein S17 induces multiple structural changes in 16S rRNA by first binding to helix 11 and then helix 7. S20 also induces changes in the rRNA by interacting with helix 9, 11, 44 and 13 in that order. These structural formations and rearrangements then prepare the binding sites for additional proteins (S12 and S16, respectively). This study demonstrates that time-dependent chemical probing is able to monitor the assembly of the 30S subunit at a level of detail never before seen. These studies also suggest that many motifs in the 16S rRNA structure are formed as a result of the proteins binding, lending evidence to the hypothesis that the function of ribosomal proteins is to shape and/or hold the RNA structure in place.
|
3 |
Neutron and light scattering studies of molten saltsFairbanks, M. January 1987 (has links)
No description available.
|
4 |
Computer simulations of water in nonpolar cavities and proteins /Yin, Hao, January 2007 (has links) (PDF)
Thesis (Ph.D.) in Chemistry--University of Maine, 2007. / Includes vita. Includes bibliographical references (leaves 86-90).
|
5 |
Computer simulations of partially confined water /Vaitheeswaran, Subramanian, January 2004 (has links) (PDF)
Thesis (Ph.D.) in Physics--University of Maine, 2004. / Includes vita. Includes bibliographical references (leaves 100-104).
|
6 |
Joint analysis of dynamically correlated networks and coevolved residue clusters : large-scale analysis and methods for predicting the effects of genetic disease associated mutations / L'analyse conjointe des réseaux corrélés dynamiquement et coévolué grappes de résidus : analyse à grande échelle et des méthodes pour prédire les effets des mutations génétiques associées maladieKarami, Yasaman 18 November 2016 (has links)
Nous avons présenté COMMA, une méthode pour décrire et comparer les architectures dynamiques de différentes protéines. Il extrait propriétés dynamiques de ensembles conformationnels pour identifier les voies de communication, des chaînes de résidus liés par des interactions stables qui se déplacent ensemble, et cliques indépendants, des groupes de résidus qui fluctuent de manière concertée. Il fournit une description de l'infostery d'un complexe de protéines qui va au-delà des mesures au-delà de classiques de la façon dont une protéine se déplace ou change de forme. Nous avons montré l'efficacité de notre approche pour fournir des idées mécanistiques sur les effets des mutations délétères en identifiant les résidus qui jouent un rôle clé dans la propagation de ces effets. En outre COMMA révèle un lien entre les clusters de coévoluant résidus et les réseaux de corrélations dynamiques. Il permet de comparer les différents types de communication se produisant entre les résidus et de hiérarchiser les différentes régions d'une protéine en fonction de l'efficacité de leur communication. En outre, nous avons présenté une approche pour exploiter les séquences et les dynamiques structurelles pour prédire un paysage mutationnel. La discussion des exemples, a révélé l'interprétation physique sur la façon dont l'étude de la conservation apporte des idées importantes sur la sensibilité des positions conservées à des mutations. Notre méthode proposée, peut détecter des régions de protéines qui sont sujettes à des troubles ou des réarrangements conformationnels substantiels. De plus, il nous a permis de proposer des mutations qui régulent la stabilité des bobines enroulées désordonnées. / We presented COMMA, a method to describe and compare the dynamical architectures of different proteins or different variants of the same protein. COMMA extracts dynamical properties from conformational ensembles to identify communication pathways, chains of residues linked by stable interactions that move together, and independent cliques, clusters of residues that fluctuate in a concerted way. It provides a description of the infostery of a protein or protein complex that goes beyond the notions of chain, domain and secondary structure element/motif, and beyond classical measures of how a protein moves and/or changes its shape. We showed the efficiency of our approach in providing mechanistic insights on the effects of deleterious mutations by pinpointing residues playing key roles in the propagation of these effects. In addition COMMA reveals a link between clusters of coevolving residues and networks of dynamical correlations. It enables to contrast the different types of communication occurring between residues and to hierarchise the different regions of a protein depending on their communication efficiency. Furthermore, we presented an approach to exploit both the sequences and structural dynamics to predict a mutational landscape. The discussion of examples, revealed physical interpretation on how the study of conservation brings significant insights on the sensitivity of conserved positions to mutations. Our proposed method, can detect protein regions that are prone to disorder or substantial conformational rearrangements. Moreover, it enabled us to suggest mutations that regulate the stability of the disordered coiled-coils.
|
7 |
Dynamiques multi-échelles de l'ADN-B / Multiscale B-DNA DynamicsBen imeddourene, Akli 21 December 2015 (has links)
L'étude de la dynamique intrinsèque de l'ADN-B permet de caractériser l'espace conformationnel exploré par cette macromolécule. Cette dynamique, qui dépend de la séquence, est un facteur clé dans les mécanismes d'interaction avec les protéines, l'ADN étant plus ou moins prédisposé à s'adapter à son partenaire. Lors de cette thèse, nous avons sondé la dynamique de l'ADN à deux échelles de temps, en nous basant sur l'étude de quatre dodécamères par Résonance Magnétique Nucléaire (RMN). Nous nous sommes d'abord intéressés à la dynamique des groupements phosphates, qui correspondent à des mouvements rapides (picoseconde-nanoseconde). Nous avons ainsi confirmé l'effet de la séquence dinucléotidique sur cette dynamique, qui peut être prédit et quantifié. Nous avons également mis en lumière pour la première fois l'étroite inter-dépendance qui existe entre déplacements chimiques du phosphore, distances internucléotides et constantes de couplage dipolaire résiduel. L'interprétation de ces observables RMN en termes de conformations des phosphates, de paramètres hélicoïdaux et de taille des sillons, montre qu'en fait ces couplages reflètent la mécanique intrinsèque de l'ADN en solution. En interfaçant ces résultats avec l'effet de séquence observé sur la dynamique des phosphates, il est aussi possible de saisir de quelle façon la conformation moyenne de la double hélice et l'espace conformationnel associé sont modulés par la séquence au niveau dinucléotidique. Enfin, des dynamiques moléculaires réalisées avec les très récents champs de force CHARMM36 et Parmbsc0ezOLI, confrontées aux données expérimentales, ont permis d'apprécier le réalisme croissant des ADN simulés et ont aidé à préciser des éléments de la dynamique qui échappent à l'expérience. Le deuxième volet de cette thèse a porté sur les mouvements de l'ADN se produisant à l'échelle de la milliseconde, encore très peu étudiés. Nous avons mis au point des expériences de dispersion-relaxation qui ont apporté la preuve de l’existence d’un échange conformationnel d'un type totalement nouveau. Cet échange ne semble apparaitre que sur un type particulier de séquence, riche en A:T. Certaines régions de l’ADN, probablement spécifiques, peuvent ainsi localement évoluer vers une forme très faiblement peuplée, dont la structure détaillée reste à caractériser. L'ensemble de ces résultats offre un panorama des capacités dynamiques de l'ADN, dépendantes de la séquence, et ouvre ainsi de nombreuses perspectives vers une meilleure compréhension des mécanismes qui guident la formation des complexes ADN-protéines. / The study of B-DNA intrinsic dynamics enables to characterize the conformational landscape explored by this macromolecule. Indeed, binding of DNA to proteins is modulated by subtle sequence-dependent variations inherent to the dynamics of free DNA, which facilitate or disfavor the structural fit with cognate partners.In this thesis, the DNA dynamics was investigated at two time-scales, on the basis of the Nuclear Magnetic Resonance (NMR) study of four dodecamers. First, we examined the fast dynamics (pico-nanosecond) of phosphate linkages. We confirmed that the dinucleotide sequence modulates the backbone dynamics, an effect that can be quantified and predicted. Then, our experimental data enabled to establish that phosphorus chemical shifts, internucleotide distances and residual dipolar couplings constants are closely correlated. The translation of the NMR observables in terms of phosphate conformations, helicoidal parameters and minor groove dimension, allowed the structural interpretation of the couplings and led to the first coherent description of the intrinsic DNA mechanics in solution. Owing our knowledge of the effect of the sequence on the backbone behavior, it is now possible to understand how the DNA shape and the associated conformational landscape are modulated at the dinucleotide level. Finally, the performance of molecular dynamics (MD) simulations with the recent force-fields Parmbsc0εζOLI and CHARMM36 was tested extensively against our NMR data. We found impressive progress towards a realistic representation of DNA, despite residual shortcomings. This advance allowed to reveal new aspects of the DNA dynamics, which cannot be assessed from experiments.The second part of this thesis focused on slow motions in B-DNA, which are still largely under-investigated. Using and developing sophisticated relaxation-dispersion NMR experiments, we demonstrated the existence of a new conformational exchange at the millisecond time-scale, which seems to only occur in a particular type of sequence, A:T rich. Thus, in addition to the familiar structural patterns that are the signature of the B double helix, some short DNA regions, likely specific, are able to explore another conformational state, weakly populated, whose detailed structure still needs to be characterized.Overall, these results provide original insights on the DNA dynamic repertoire, sequence-dependent, and open the way towards a better understanding of the mechanisms underlying the formation of DNA-protein complexes.
|
8 |
STRUCTURE AND EXCITED-STATE DYNAMICS OF AROMATIC NITRILES IN SUPERSONIC FREE JETCampos Ramos, Ricardo E. January 2005 (has links)
No description available.
|
9 |
Investigation of Natural AdhesivesBradley C Mcgill (13949928) 13 October 2022 (has links)
<p>Adhesives are found in almost every aspect of the modern world. They are found in plywood used in buildings, electronics, shoes, plumbing and in almost every facet of your daily life. Nature also has an abundance of these adhesives that are used fora multitude of applications. Some animals, like the blue mussel, use their adhesive for protection against ocean waves and predators while other animals, such as the spider, use it to trap prey. Investigation of theses adhesives has led to the identification of several different proteins that allow for these animals to make their adhesive. Some of them are composed of rare amino acids that while other animals use a combination of inorganic and organic components. Understanding of these unique adhesives can be a boon for designof future adhesives that do not have the disadvantagesof current day commercialized glues.</p>
<p>Increasing interest in the restoration of natural oyster reefs and the cement that holds them together has resulted in the identification of the Shelk2 protein that is found both in the mantle of the oyster’s shell as well as the cement that holds the reefs together. Gaining an understanding of how this protein functions and its part in the oyster reef could be quite beneficial for projects investing in reef restorations as well as underwater adhesion. Gathering protein from the animal for experimentation and characterization can be labor intensive and extremely challenging. Luckily, cloning technology has become a useful tool for the expression of large quantities of proteins that can be difficult or impossible to gather from the native animal. Using <em>E. coli</em>, it is possible to design and express this protein in hopes of gaining a better understanding of its impact on oyster settlement and adhesion.</p>
<p>Sustainability is a major downside to current day adhesives that current technologies have not been able to solve. Most adhesives that are on the market today are primarily derived from petroleum. Current research has begun investigating alternatives to the large epoxy and formaldehyde adhesive market, but the barrier of entry is hard to overcome. To replace these glues the new material must be affordable, non-petroleum derived, and available on a massive scale. These requirements are hard to meet for many materials and due to that the current bio-adhesive are generally very low strength.</p>
<p>The work presented here will detail the characterization, and expression of some of these natural adhesives that have been found in the Eastern oyster. Another aspect of this work includes the synthesis of a new bio-based adhesive system. Utilizing biomimetic chemistry along with sustainably sourced materials a new adhesive has been formulated that has comparable adhesive strength to current day commercial adhesives.</p>
|
10 |
Understanding the mechanism of permeation through graphene-based membranes using molecular dynamics simulationsDix, James January 2017 (has links)
The UN predicts that by 2050 there will water shortages throughout the globe. Current sources for safe, clean drinking water are being over mined and exhausted. Seawater provides an alternative water source, but a high salt content makes it unsuitable for the majority of applications. However, reverse osmosis lowers the salt content producing water that is safe for human consumption. Reverse osmosis uses a semi-permeable membrane to prevent the transport of salt but allows for the transport of water. Currently these membranes are susceptible to fouling and contamination, which reduces their efficiency. Graphene-oxide membranes offer a new material for reserves osmosis membranes. Sheets of graphene-oxide are stacked in a layered structure. The separation between the sheets can be controlled using physical confinement, resulting in limited ion permeation of abundant cations in seawater, like Na+ and K+. This is believed to be due to the separation of 0.76 nm between the graphene sheets, forcing the ions to lose its surrounding water molecules, making it unfavourable for the ion to travel through the membrane. Molecular dynamics simulations can give an atomic level insight into the molecular processes within GO membranes. Recent simulations have shown that charged species are attracted to graphene surfaces due to polarisation of the pi-electron system. This work has managed to incorporate these ion-pi interactions into molecular dynamics simulations. Including ion-pi interactions caused some ions, like Na+ and K+, to prefer to lose water molecules and reside at a graphene surface. This work observed the same phenomena when ions were confined to graphene channel ranging from 1.3 nm - 0.7 nm. This observation could have a large impact on whether dehydration is limiting the permeation of these two ions, or if there are additional processes that limit their molecular transport.
|
Page generated in 0.127 seconds