• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 16
  • 12
  • 11
  • 8
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 54
  • 47
  • 39
  • 36
  • 34
  • 30
  • 28
  • 24
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Métodos Bayesianos aplicados em taxonomia molecular / Bayesian methods applied in molecular taxonomy

Villanueva Talavera, Edwin Rafael 31 August 2007 (has links)
Neste trabalho são apresentados dois métodos de agrupamento de dados visados para aplicações em taxonomia molecular. Estes métodos estão baseados em modelos probabilísticos, o que permite superar alguns problemas apresentados nos métodos não probabilísticos existentes, como a dificuldade na escolha da métrica de distância e a falta de tratamento e aproveitamento do conhecimento a priori disponível. Os métodos apresentados combinam por meio do teorema de Bayes a informação extraída dos dados com o conhecimento a priori que se dispõe, razão pela qual são denominados métodos Bayesianos. O primeiro método, método de agrupamento hierárquico Bayesiano, está baseado no algoritmo HBC (Hierarchical Bayesian Clustering). Este método constrói uma hierarquia de partições (dendrograma) baseado no critério da máxima probabilidade a posteriori de cada partição. O segundo método é baseado em um tipo de modelo gráfico probabilístico conhecido como redes Gaussianas condicionais, o qual foi adaptado para problemas de agrupamento. Ambos métodos foram avaliados em três bancos de dados donde se conhece a rótulo da classe. Os métodos foram usados também em um problema de aplicação real: a taxonomia de uma coleção brasileira de estirpes de bactérias do gênero Bradyrhizobium (conhecidas por sua capacidade de fixar o \'N IND.2\' do ar no solo). Este banco de dados é composto por dados genotípicos resultantes da análise do RNA ribossômico. Os resultados mostraram que o método hierárquico Bayesiano gera dendrogramas de boa qualidade, em alguns casos superior que o melhor dos algoritmos hierárquicos analisados. O método baseado em redes gaussianas condicionais também apresentou resultados aceitáveis, mostrando um adequado aproveitamento do conhecimento a priori sobre as classes tanto na determinação do número ótimo de grupos, quanto no melhoramento da qualidade dos agrupamentos. / In this work are presented two clustering methods thought to be applied in molecular taxonomy. These methods are based in probabilistic models which overcome some problems observed in traditional clustering methods such as the difficulty to know which distance metric must be used or the lack of treatment of available prior information. The proposed methods use the Bayes theorem to combine the information of the data with the available prior information, reason why they are called Bayesian methods. The first method implemented in this work was the hierarchical Bayesian clustering, which is an agglomerative hierarchical method that constructs a hierarchy of partitions (dendogram) guided by the criterion of maximum Bayesian posterior probability of the partition. The second method is based in a type of probabilistic graphical model knows as conditional Gaussian network, which was adapted for data clustering. Both methods were validated in 3 datasets where the labels are known. The methods were used too in a real problem: the clustering of a brazilian collection of bacterial strains belonging to the genus Bradyrhizobium, known by their capacity to transform the nitrogen (\'N IND.2\') of the atmosphere into nitrogen compounds useful for the host plants. This dataset is formed by genetic data resulting of the analysis of the ribosomal RNA. The results shown that the hierarchical Bayesian clustering method built dendrograms with good quality, in some cases, better than the other hierarchical methods. In the method based in conditional Gaussian network was observed acceptable results, showing an adequate utilization of the prior information (about the clusters) to determine the optimal number of clusters and to improve the quality of the groups.
82

On conditional random fields: applications, feature selection, parameter estimation and hierarchical modelling

Tran, The Truyen January 2008 (has links)
There has been a growing interest in stochastic modelling and learning with complex data, whose elements are structured and interdependent. One of the most successful methods to model data dependencies is graphical models, which is a combination of graph theory and probability theory. This thesis focuses on a special type of graphical models known as Conditional Random Fields (CRFs) (Lafferty et al., 2001), in which the output state spaces, when conditioned on some observational input data, are represented by undirected graphical models. The contributions of thesis involve both (a) broadening the current applicability of CRFs in the real world and (b) deepening the understanding of theoretical aspects of CRFs. On the application side, we empirically investigate the applications of CRFs in two real world settings. The first application is on a novel domain of Vietnamese accent restoration, in which we need to restore accents of an accent-less Vietnamese sentence. Experiments on half a million sentences of news articles show that the CRF-based approach is highly accurate. In the second application, we develop a new CRF-based movie recommendation system called Preference Network (PN). The PN jointly integrates various sources of domain knowledge into a large and densely connected Markov network. We obtained competitive results against well-established methods in the recommendation field. / On the theory side, the thesis addresses three important theoretical issues of CRFs: feature selection, parameter estimation and modelling recursive sequential data. These issues are all addressed under a general setting of partial supervision in that training labels are not fully available. For feature selection, we introduce a novel learning algorithm called AdaBoost.CRF that incrementally selects features out of a large feature pool as learning proceeds. AdaBoost.CRF is an extension of the standard boosting methodology to structured and partially observed data. We demonstrate that the AdaBoost.CRF is able to eliminate irrelevant features and as a result, returns a very compact feature set without significant loss of accuracy. Parameter estimation of CRFs is generally intractable in arbitrary network structures. This thesis contributes to this area by proposing a learning method called AdaBoost.MRF (which stands for AdaBoosted Markov Random Forests). As learning proceeds AdaBoost.MRF incrementally builds a tree ensemble (a forest) that cover the original network by selecting the best spanning tree at a time. As a result, we can approximately learn many rich classes of CRFs in linear time. The third theoretical work is on modelling recursive, sequential data in that each level of resolution is a Markov sequence, where each state in the sequence is also a Markov sequence at the finer grain. One of the key contributions of this thesis is Hierarchical Conditional Random Fields (HCRF), which is an extension to the currently popular sequential CRF and the recent semi-Markov CRF (Sarawagi and Cohen, 2004). Unlike previous CRF work, the HCRF does not assume any fixed graphical structures. / Rather, it treats structure as an uncertain aspect and it can estimate the structure automatically from the data. The HCRF is motivated by Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998). Importantly, the thesis shows that the HHMM is a special case of HCRF with slight modification, and the semi-Markov CRF is essentially a flat version of the HCRF. Central to our contribution in HCRF is a polynomial-time algorithm based on the Asymmetric Inside Outside (AIO) family developed in (Bui et al., 2004) for learning and inference. Another important contribution is to extend the AIO family to address learning with missing data and inference under partially observed labels. We also derive methods to deal with practical concerns associated with the AIO family, including numerical overflow and cubic-time complexity. Finally, we demonstrate good performance of HCRF against rivals on two applications: indoor video surveillance and noun-phrase chunking.
83

Statistical causal analysis for fault localization

Baah, George Kofi 08 August 2012 (has links)
The ubiquitous nature of software demands that software is released without faults. However, software developers inadvertently introduce faults into software during development. To remove the faults in software, one of the tasks developers perform is debugging. However, debugging is a difficult, tedious, and time-consuming process. Several semi-automated techniques have been developed to reduce the burden on the developer during debugging. These techniques consist of experimental, statistical, and program-structure based techniques. Most of the debugging techniques address the part of the debugging process that relates to finding the location of the fault, which is referred to as fault localization. The current fault-localization techniques have several limitations. Some of the limitations of the techniques include (1) problems with program semantics, (2) the requirement for automated oracles, which in practice are difficult if not impossible to develop, and (3) the lack of theoretical basis for addressing the fault-localization problem. The thesis of this dissertation is that statistical causal analysis combined with program analysis is a feasible and effective approach to finding the causes of software failures. The overall goal of this research is to significantly extend the state of the art in fault localization. To extend the state-of-the-art, a novel probabilistic model that combines program-analysis information with statistical information in a principled manner is developed. The model known as the probabilistic program dependence graph (PPDG) is applied to the fault-localization problem. The insights gained from applying the PPDG to fault localization fuels the development of a novel theoretical framework for fault localization based on established causal inference methodology. The development of the framework enables current statistical fault-localization metrics to be analyzed from a causal perspective. The analysis of the metrics show that the metrics are related to each other thereby allowing the unification of the metrics. Also, the analysis of metrics from a causal perspective reveal that the current statistical techniques do not find the causes of program failures instead the techniques find the program elements most associated with failures. However, the fault-localization problem is a causal problem and statistical association does not imply causation. Several empirical studies are conducted on several software subjects and the results (1) confirm our analytical results, (2) demonstrate the efficacy of our causal technique for fault localization. The results demonstrate the research in this dissertation significantly improves on the state-of-the-art in fault localization.
84

Stochastic m-estimators: controlling accuracy-cost tradeoffs in machine learning

Dillon, Joshua V. 15 November 2011 (has links)
m-Estimation represents a broad class of estimators, including least-squares and maximum likelihood, and is a widely used tool for statistical inference. Its successful application however, often requires negotiating physical resources for desired levels of accuracy. These limiting factors, which we abstractly refer as costs, may be computational, such as time-limited cluster access for parameter learning, or they may be financial, such as purchasing human-labeled training data under a fixed budget. This thesis explores these accuracy- cost tradeoffs by proposing a family of estimators that maximizes a stochastic variation of the traditional m-estimator. Such "stochastic m-estimators" (SMEs) are constructed by stitching together different m-estimators, at random. Each such instantiation resolves the accuracy-cost tradeoff differently, and taken together they span a continuous spectrum of accuracy-cost tradeoff resolutions. We prove the consistency of the estimators and provide formulas for their asymptotic variance and statistical robustness. We also assess their cost for two concerns typical to machine learning: computational complexity and labeling expense. For the sake of concreteness, we discuss experimental results in the context of a variety of discriminative and generative Markov random fields, including Boltzmann machines, conditional random fields, model mixtures, etc. The theoretical and experimental studies demonstrate the effectiveness of the estimators when computational resources are insufficient or when obtaining additional labeled samples is necessary. We also demonstrate that in some cases the stochastic m-estimator is associated with robustness thereby increasing its statistical accuracy and representing a win-win.
85

On a class of distributed algorithms over networks and graphs

Lee, Sang Hyun, 1977- 01 June 2011 (has links)
Distributed iterative algorithms are of great importance, as they are known to provide low-complexity and approximate solutions to what are otherwise high-dimensional intractable optimization problems. The theory of message-passing based algorithms is fairly well developed in the coding, machine learning and statistical physics literatures. Even though several applications of message-passing algorithms have already been identified, this work aims at establishing that a plethora of other applications exist where it can be of great importance. In particular, the goal of this work is to develop and demonstrate applications of this class of algorithms in network communications and computational biology. In the domain of communications, message-passing based algorithms provide distributed ways of inferring the optimal solution without the aid of a central agent for various optimization problems that happen in the resource allocation of communication networks. Our main framework is Affinity Propagation (AP), originally developed for clustering problems. We reinterpret this framework to unify the development of distributed algorithms for discrete resource allocation problems. Also, we consider a network-coded communication network, where continuous rate allocation is studied. We formulate an optimization problem with a linear cost function, and then utilize a Belief Propagation (BP) approach to determine a decentralized rate allocation strategy. Next, we move to the domain of computational biology, where graphical representations and computational biology play a major role. First, we consider the motif finding problem with several DNA sequences. In effect, this is a sequence matching problem, which can be modeled using various graphical representations and also solved using low-complexity algorithms based on message-passing techniques. In addition, we address the application of message-passing algorithms for a DNA sequencing problem where the one dimensional structure of a single DNA sequence is identified. We reinterpret the problem as being equivalent to the decoding of a nonlinear code. Based on the iterative decoding framework, we develop an appropriate graphical model which enables us to derive a message-passing algorithm to improve the performance of the DNA sequencing problem. Although this work consists of disparate application domains of communications, networks and computational biology, graphical models and distributed message-passing algorithms form a common underlying theme. / text
86

Introduction to graphical models with an application in finding coplanar points

Roux, Jeanne-Marie 03 1900 (has links)
Thesis (MSc (Applied Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis provides an introduction to the statistical modeling technique known as graphical models. Since graph theory and probability theory are the two legs of graphical models, these two topics are presented, and then combined to produce two examples of graphical models: Bayesian Networks and Markov Random Fields. Furthermore, the max-sum, sum-product and junction tree algorithms are discussed. The graphical modeling technique is then applied to the specific problem of finding coplanar points in stereo images, taken with an uncalibrated camera. Although it is discovered that graphical models might not be the best method, in terms of speed, to use for this appliation, it does illustrate how to apply this technique in a real-life problem. / AFRIKAANSE OPSOMMING: Hierdie tesis stel die leser voor aan die statistiese modelerings-tegniek genoemd grafiese modelle. Aangesien grafiek teorie en waarskynlikheidsleer die twee bene van grafiese modelle is, word hierdie areas aangespreek en dan gekombineer om twee voorbeelde van grafiese modelle te vind: Bayesian Netwerke en Markov Lukrake Liggaam. Die maks-som, som-produk en aansluitboom algoritmes word ook bestudeer. Nadat die teorie van grafiese modelle en hierdie drie algoritmes afgehandel is, word grafiese modelle dan toegepas op ’n spesifieke probleem— om punte op ’n gemeenskaplike vlak in stereo beelde te vind, wat met ’n ongekalibreerde kamera geneem is. Alhoewel gevind is dat grafiese modelle nie die optimale metode is om punte op ’n gemeenskaplike vlak te vind, in terme van spoed, word die gebruik van grafiese modelle wel ten toongestel met hierdie praktiese voorbeeld. / National Research Foundation (South Africa)
87

Alocação de tarefas de desastre na plataforma RMASBench : uma abordagem baseada em passagem de mensagens e formação de grupos / Allocation of disaster tasks in the RMASBench platform : an approach based on message passing and group formation

Corrêa, Abel January 2015 (has links)
Em ambientes de desastre urbano, grupos de agentes de resgate devem resolver tarefas de modo a minimizar os danos que podem ocorrer na cidade. Tais ambientes são dinâmicos e parcialmente observáveis, com características que dizem respeito à distância espacial, quantidade de recursos, à dificuldade da tarefa de desastre e à capacidade do agente de atendê-la. A comunicação entre os agentes pode ser ruidosa ou inexistente. Os sistemas multiagente são desenvolvidos para resolver problemas complexos e abrangentes, que estão além da capacidade de um único agente. Nesse contexto, os agentes são elementos computacionais autônomos que são responsáveis por uma parte da solução do problema. Os agentes são situados em um ambiente e podem ter habilidade social, interagindo com outros agentes para resolver as tarefas. Comumente, o domínio de desastre urbano é formalizado como um problema de alocação de tarefas e modelado como um problema de otimização de restrições distribuídas entre agentes heterogêneos, onde eles têm que escolher as tarefas que maximizam suas utilidades individuais ou minimizem seus custos individuais. Essa dissertação de mestrado propõe um modelo para formação de grupos de agentes baseado na minimização de uma métrica de distância. O modelo é formalizado como um problema de otimização de restrições distribuídas, usando algoritmos para troca de mensagens entre os agentes. O modelo chamado Formação de Grupos pela Minimização da Distância (FGMD) tem agentes autônomos que tem a capacidade de se auto-organizar sem a necessidade de um controle centralizado. Aplicamos o FGMD na plataforma RMASBench, que é um simulador para situações de desastre urbano. Comparou-se o FGMD com os algoritmos mais recentes de passagem de mensagens, tendo sido verificado que o FGMD use menos computação não-paralela. Com respeito a minimização dos danos na cidade, mostrou-se que é possível obter resultados melhores que as abordagens do estado-da-arte com leve aumento no esforço computacional. / In urban disaster environments, groups of rescue agents must solve tasks in order to minimize the damage that can occur in a city. Such environments are dynamic and partially observable, with features that correspond to spatial distance, amount of resources, difficulty of the disaster task, and the capability of the agent to handle it. The communication between the agents can be noisy or non-existent. Multiagent systems are developed to solve complex and comprehensive problems, that are beyond the capability of one single agent. In this context, the agents are autonomous computational elements that are responsible for a piece of the solution of the problem. The agents are situated in an environment, and may have social ability, interacting with other agents to solve the tasks. Commonly, the urban disaster domain is formalized as a task allocation problem, and modelled as a constraint optimization problem distributed among heterogeneous agents, where they have to choose the tasks that maximize their individual utilities or minimize their individual costs. This master thesis proposes a model for formation of groups of agents based in the minimization of a distance. The model is formalized as a distributed constraint optimization problem, using algorithms to exchange messages between agents. The model called Formation of Groups by Minimization of Distance (FGMD) has self-organizing autonomous agents without a centralized control. We applied the FGMD in the RMASBench platform, that is a simulator for urban disaster situations. We compare the FGMD with the most recent message passing algorithms, verifying that FGMD uses less non-parallel computation. With respect to the minimization of the damage in the city, we show that it is possible to obtain better results than the state-of-art approaches, with slightly increase of computational effort.
88

Graphical models and point set matching / Modelos Gráficos e Casamento de Padrões de Pontos

Caetano, Tiberio Silva January 2004 (has links)
Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fundamentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Computacional até Química Computacional. Sempre que dois padrões complexos estão codi- ficados em termos de dois conjuntos de pontos que identificam suas características fundamentais, sua comparação pode ser vista como um problema de casamento de padrões de pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento inexato (quando ruído está presente), resultados experimentais confirmam a validade da abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos como um problema de casamento de grafos ponderados. O problema de casamento de grafos ponderados é então formulado como um problema de inferência Bayesiana em um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo completo. É possível mostrar que inferência probabilística exata neste modelo simples tem complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em consideração. Experimentos computacionais comparando esta técnica com a bem conhecida baseada em relaxamento probabilístico evidenciam uma melhora significativa de desempenho para casamento inexato de padrões de pontos. A abordagem proposta é signi- ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na ausência de ruído, os resultados são sempre perfeitos. / Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.
89

Alocação de tarefas de desastre na plataforma RMASBench : uma abordagem baseada em passagem de mensagens e formação de grupos / Allocation of disaster tasks in the RMASBench platform : an approach based on message passing and group formation

Corrêa, Abel January 2015 (has links)
Em ambientes de desastre urbano, grupos de agentes de resgate devem resolver tarefas de modo a minimizar os danos que podem ocorrer na cidade. Tais ambientes são dinâmicos e parcialmente observáveis, com características que dizem respeito à distância espacial, quantidade de recursos, à dificuldade da tarefa de desastre e à capacidade do agente de atendê-la. A comunicação entre os agentes pode ser ruidosa ou inexistente. Os sistemas multiagente são desenvolvidos para resolver problemas complexos e abrangentes, que estão além da capacidade de um único agente. Nesse contexto, os agentes são elementos computacionais autônomos que são responsáveis por uma parte da solução do problema. Os agentes são situados em um ambiente e podem ter habilidade social, interagindo com outros agentes para resolver as tarefas. Comumente, o domínio de desastre urbano é formalizado como um problema de alocação de tarefas e modelado como um problema de otimização de restrições distribuídas entre agentes heterogêneos, onde eles têm que escolher as tarefas que maximizam suas utilidades individuais ou minimizem seus custos individuais. Essa dissertação de mestrado propõe um modelo para formação de grupos de agentes baseado na minimização de uma métrica de distância. O modelo é formalizado como um problema de otimização de restrições distribuídas, usando algoritmos para troca de mensagens entre os agentes. O modelo chamado Formação de Grupos pela Minimização da Distância (FGMD) tem agentes autônomos que tem a capacidade de se auto-organizar sem a necessidade de um controle centralizado. Aplicamos o FGMD na plataforma RMASBench, que é um simulador para situações de desastre urbano. Comparou-se o FGMD com os algoritmos mais recentes de passagem de mensagens, tendo sido verificado que o FGMD use menos computação não-paralela. Com respeito a minimização dos danos na cidade, mostrou-se que é possível obter resultados melhores que as abordagens do estado-da-arte com leve aumento no esforço computacional. / In urban disaster environments, groups of rescue agents must solve tasks in order to minimize the damage that can occur in a city. Such environments are dynamic and partially observable, with features that correspond to spatial distance, amount of resources, difficulty of the disaster task, and the capability of the agent to handle it. The communication between the agents can be noisy or non-existent. Multiagent systems are developed to solve complex and comprehensive problems, that are beyond the capability of one single agent. In this context, the agents are autonomous computational elements that are responsible for a piece of the solution of the problem. The agents are situated in an environment, and may have social ability, interacting with other agents to solve the tasks. Commonly, the urban disaster domain is formalized as a task allocation problem, and modelled as a constraint optimization problem distributed among heterogeneous agents, where they have to choose the tasks that maximize their individual utilities or minimize their individual costs. This master thesis proposes a model for formation of groups of agents based in the minimization of a distance. The model is formalized as a distributed constraint optimization problem, using algorithms to exchange messages between agents. The model called Formation of Groups by Minimization of Distance (FGMD) has self-organizing autonomous agents without a centralized control. We applied the FGMD in the RMASBench platform, that is a simulator for urban disaster situations. We compare the FGMD with the most recent message passing algorithms, verifying that FGMD uses less non-parallel computation. With respect to the minimization of the damage in the city, we show that it is possible to obtain better results than the state-of-art approaches, with slightly increase of computational effort.
90

Graphical models and point set matching / Modelos Gráficos e Casamento de Padrões de Pontos

Caetano, Tiberio Silva January 2004 (has links)
Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fundamentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Computacional até Química Computacional. Sempre que dois padrões complexos estão codi- ficados em termos de dois conjuntos de pontos que identificam suas características fundamentais, sua comparação pode ser vista como um problema de casamento de padrões de pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento inexato (quando ruído está presente), resultados experimentais confirmam a validade da abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos como um problema de casamento de grafos ponderados. O problema de casamento de grafos ponderados é então formulado como um problema de inferência Bayesiana em um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo completo. É possível mostrar que inferência probabilística exata neste modelo simples tem complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em consideração. Experimentos computacionais comparando esta técnica com a bem conhecida baseada em relaxamento probabilístico evidenciam uma melhora significativa de desempenho para casamento inexato de padrões de pontos. A abordagem proposta é signi- ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na ausência de ruído, os resultados são sempre perfeitos. / Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Page generated in 0.0988 seconds