• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 108
  • 102
  • 43
  • 40
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 763
  • 106
  • 102
  • 80
  • 76
  • 68
  • 62
  • 61
  • 51
  • 49
  • 49
  • 48
  • 47
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Thermal and mechanical fatigue of 6061 Al - P100 Gr metal matrix composite

Hansen, Robert C. January 1990 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, September 1990. / Thesis Advisor(s): Dutta, Indranath ; Mitra, Shantanu. "September 1990." Description based on title screen as viewed on December 21, 2009. DTIC Identifier(s): Fatigue (mechanics), thermal fatigue, metal matrix composites, laminates, bending, ultimate strength, fiber reinforced composites, theses. Author(s) subject terms: Aluminum-graphite composite, bend fatigue, thermal fatigue. Includes bibliographical references (p. 64-65). Also available in print.
112

Mass spectrometric study of the laser vaporisations of graphite and uranium dioxide up to 4000k

Pflieger, Rachel Drillon, Marc. Sheindlin, Mikhail. January 2007 (has links) (PDF)
Thèse doctorat : Chimie-Physique : Strasbourg 1 : 2006. / Titre provenant de l'écran-titre. Bibliogr. 9 p.
113

Réseaux bidimensionnels d'agrégats magnétiques préformés en phase gazeuse

Hannour, Abdelkrim Prével, Brigitte Bardotti, Laurent January 2007 (has links) (PDF)
Reproductin de : Thèse de doctorat : Physique de la matière condensée : Lyon 1 : 2007. / Titre provenant de l'écran titre. 190 réf. bibliogr.
114

Characteristics of graphitic films for carbon based magnetism and electronics

Hong, Jeongmin January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 19, 2010). Includes bibliographical references. Also issued in print.
115

Surface/interface modification and characterization of C-face epitaxial graphene

Wang, Feng 21 September 2015 (has links)
Graphene has been one of the most interesting and widely investigated materials in the past decade. Because of its high mobility, high current density, inherent strength, high temperature stability and other properties, scientists consider it a promising material candidate for the future all-carbon electronics. However, graphene still exhibits a number of problems such as an unknown interface structure and no sizable band gap. Therefore, the purpose of this thesis is to probe and solve these problems to make graphene suitable for electronics. The work focuses on high-quality C-face epitaxial graphene, which is grown on the (000-1) face (C-face) of hexagonal silicon carbide using the confinement-controlled sublimation method. C-face epitaxial graphene has much higher mobility compared to Si-face graphene, resulting from its special stacking order and interface structure, the latter of which is not fully understood. Thus, the first part of the work consists of a project, which is to investigate and modify the interface and the surface of C-face graphene by silicon deposition and annealing. Results of this project show that silicon can intercalate into the graphene-SiC interface and form SiC by bonding carbon atoms on the graphene surface. Another crucial problem of graphene is the absence of a band gap, which prevents graphene from becoming an ideal candidate for traditional digital logic devices. Therefore, the second project of this work is devoted to introducing a wide band gap into the graphene electronic structure by growing from a nitrogen-seeded SiC. After successful opening of a band gap, a pre-patterning method is applied to improve graphene thickness variations, orientational epitaxy, and the gapped electronic structure.
116

Fabrication of graphitic carbon nanostructures and their electrochemical applications

Du, Rongbing Unknown Date
No description available.
117

Superconductivity at Graphite Interfaces

Ballestar, Ana 25 April 2014 (has links) (PDF)
The existence of superconductivity in graphite has been under discussion since the 1960s when it was found in intercalated graphitic compounds, such as C8K, C8Rb and C8Cs. However, it was only about 40 years ago when the existence of superconductivity in pure graphite came up. In this work we directly investigate the interfaces highly oriented pyrolytic graphite (HOPG) has in its inner structure, since they play a major role in the electronic properties. The results obtained after studying the electrical transport provide clear evidence on granular superconductivity localized at the interfaces of graphite samples. Zero resistance states, strong current dependence and magnetic field effect on the superconducting phase support this statement. Additionally, an abrupt reduction in the measured voltage at temperatures from 3 to 175 K has been observed. However, the upper value of this transition temperature seems to not have been reached yet. A possible method to enhance it is to increase the carrier density of graphite samples. In order to preserve to quasi-two-dimensional structure of highly oriented pyrolytic graphite, chemical doping has been dismissed in the frame of this work. We used an external electric field to move the Fermi level and, hence, try to trigger superconductivity in multi layer graphene samples. A drop on the resistance at around 17 K has been measured for a large enough electric field applied perpendicular to the graphene planes. This transition is strongly affected by magnetic field and only appeared at low temperatures. As a result of the studies included in this work, it appears clear that graphite has a superconducting phase located at certain interfaces with a very high transition temperature.
118

A Versatile fabrication platform for the exploration of new electronic materials and device structures

Collins, Daniel 31 August 2012 (has links)
Ubiquitous concerns in device fabrication are nanoscale positioning and the integration of complex combinations of diverse materials, many of which are extremely fragile. Frequently the completed device requires one or more of the constituent materials to be synthesized under suboptimal conditions, thus compromising the performance of the final structure. We have developed a platform to fabricate multi-component electrode cross-bar structures, where each material can be synthesized under its own ideal conditions. Furthermore, surface treatments and procedures that may otherwise be incompatible can be performed without concern of damage to the other constituent materials. We demonstrate our approach by fabricating an all carbon cross-bar electrode structure comprised of a graphene-graphite heterojunction. Initially, a graphene field effect transistor is fabricated using electron beam and optical lithography. The top graphite electrode is sculpted from a bulk piece of highly oriented pyrolytic graphite with the aid of a focused ion beam (FIB) and integrated micromanipulator system. This requires real-time shaping, cutting, accurate positioning (circa 100 nm precision) and wiring of the graphite top electrode. Electron transport characteristics of each electrode component and the final heterostructure have been measured. We show that this process is effective for the production of micron and submicron-scale multi-layer device structures including other materials such as gold. This fabrication scheme could be extended to produce novel structures such as mechanical resonators, and provide a foundation for combining fragile materials that have otherwise been incompatible with traditional fabrication techniques. / Graduate
119

Understanding effects of nano-reinforcement-matrix interphase on the elastic response of polymer nanocomposites

Karevan, Mehdi 12 January 2015 (has links)
Current technology of polymer nanocomposites (PNC) emphasizes the need for fundamental understanding of the links between manufacturing method and macro-scale properties in order to engineer processing and performance of PNCs. The manufacturing method is one key variable that dramatically defines interfacial interactions on the nano-scale and thus the properties of polymer near the interface of nanomaterial/polymer or interphase, level of dispersion and the crystallization behavior of semi-crystalline PNCs. These factors in particular govern reinforcing mechanisms at the interface and consequently impart important properties to PNCs. The current approach to manufacturing PNCs involves trial and error with elaborate, costly and time consuming experimental characterization of PNCs. Therefore, a deep insight into the links among manufacturing method, interfacial interactions and bulk properties is essential in order to design and fabricate PNCs with engineered performance. The main goal of this study was to provide a better understanding of the effect of manufacturing methods on the macro-scale properties of PNCs, with a focus on the role of interfacial interactions, that can lead to fabrication of PNCs with multifunctional performance. The objectives of this research were to: i) determine the detail correlations among manufacturing method, nano- and microstructure and macro-scale properties of multifunctional exfoliated graphite nanoplatelets/polyamide 12 polymer nanocomposites with enhanced mechanical and electrical performance through systematic manufacturing and experimental methodologies, ii) understand correlations among nano-scale interfacial interactions, physical and structural properties of the polymer at the interface and macro-scale behavior of PNCs, and iii) evaluate effect of manufacturing method on electrical behavior of PNCs with directionally dependent performance. This study demonstrated key correlations among manufacturing techniques, interfacial interactions and macro-scale properties of PNCs. A methodology was introduced to understand and determine the characteristics of a complex constrained region produced at the interface of nanomaterials and polymer in semi-crystalline PNCs. Finally, the study illustrated superior electrical and morphological properties of selective laser sintering (SLS) processed parts over injection molded PNCs and thus confirmed the capability of SLS in the development of electrically conductive PNCs that exhibit multifunctional performance. In conclusion, the study provided an insight into the links among process, nano-scale interfacial interactions and microstructure to better understand effects of manufacturing technique on macro-scale properties of PNCs, which enables fabrication of conductive PNCs with multifunctional performance.
120

A compilation of graphitic occurrences in the Archaean of part of northwestern Quebec.

Easdon, Michael Mortimer. January 1970 (has links)
No description available.

Page generated in 0.0374 seconds