• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 32
  • 10
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of new carbon materials

Morris, Christine January 1990 (has links)
No description available.
2

Development of graphitic adsorbents for water treatment using adsorption and electrochemical regeneration

Asghar, Hafiz Muhammad Anwaar January 2011 (has links)
In order to address ground and industrial water pollution, the University of Manchester has developed a novel and economic water treatment technology called the Arvia® process. This technology is being commercialized through a spin-out company, Arvia Technology Ltd. This process consists of adsorption and electrochemical regeneration in a single unit and can be carried out in batch or continuous modes where both operations can run simultaneously. This process has been successfully demonstrated for the removal and destruction of a number of organic contaminants using a graphite based adsorbent known as Nyex®1000. Nyex®1000 is an intercalation compound prepared from Chinese natural large fake graphite. This adsorbent has been found to be capable of fast adsorption and quick electrochemical regeneration in minutes due to its non-porous surface and high electrical conductivity. However, Nyex®1000 has a small adsorptive capacity for a number of organic pollutants and there is thus a need to develop new adsorbents with the aim of achieving high adsorptive capacity with maintaining good electrical conductivity. In this context, three routes for the development of adsorbents were selected, adsorbents developed through electrochemical intercalation, adsorbent developed through thermal and mechanical treatment of GIC-bisulphate and adsorbents developed through the formulation of composite materials. In order to strengthen the contributing effect of surface treatment, all raw graphite materials and developed adsorbents were characterized using Boehm titration, X-ray EDS, zeta potential, powder XRD, SEM, BET surface area, pore volume, particle size and bulk density techniques. These adsorbents were tested for the removal of a number of different target organic pollutants such as acid violet 17, mercaptans, phenol and humic acid using the Arvia® process. The performance of the developed materials was compared with the current adsorbent used in the Arvia® process i.e. Nyex®1000. A range of graphite types (synthetic graphite, Chinese natural large fake gra- phite, Madagascan medium fake graphite, natural vein graphite and recycled Abstract 27 vein graphite) were tested for the removal of acid violet 17 before and after electrochemical treatment in order to investigate the selection of the graphite types for the Arvia® process. The electrochemical surface treatment improved the adsorptive capacity by a factor of two for most of the graphite types tested and changed the surface of the graphite from hydrophobic to hydrophilic. Results obtained through surface characterization using Boehm titration, X-ray (EDS) elemental analysis and zeta potential measurements revealed a significant increase in oxygen containing surface functional groups on the surface of CNLFG in consequence of electrochemical surface treatment. The second type of adsorbent was developed through thermal and mechanical treatment of GIC bisulphate. It was tested for the removal of acid violet 17, mercaptans (ethane thiol & methyl propane thiol), phenol and humic acid using the Arvia® process. This material had twice the electrical conductivity of Nyex® 1000 and improved the adsorptive capacity by a factor of three for acid violet 17, approximately seven to eight for ethane thiol and methyl propane thiol, seven for phenol and two for humic acid. Starting and developed adsorbent materials were characterized using above mentioned techniques. The third type of adsorbent materials, three composite adsorbents were developed using high shear (wet) and compaction (dry) granulation methods. The composite adsorbent made through high shear wet granulation was found to have poor mechanical strength. The second and third composite adsorbents were developed through dry compaction granulation using carbon black, synthetic graphite and exfoliated graphite as raw materials. These adsorbents delivered improved adsorptive capacity for acid violet 17 by a factor of 100 and 9 respectively. Electrochemical regeneration efficiencies of around 100 % were obtained for these adsorbent materials. However, electrochemical parameters required to achieve 100 % regeneration, such as current density and regeneration time were found to vary depending on the adsorptive capacity of each adsorbent material for a particular polluting agent.
3

Nucleation of chemical vapor deposited diamond from graphitic carbon

Li, Zhidan January 1993 (has links)
No description available.
4

Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

Hughes, Zak E., Tomasio, S.M., Walsh, T.R. 13 March 2019 (has links)
No / To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies. / Veski
5

Metal loaded g-C₃N₄ for visible light-driven H₂ production

Fina, Federica January 2014 (has links)
The need for green and renewable fuels has led to the investigation of ways to exploit renewable resources. Solar among all the renewables is the most powerful and its conversion into usable energy would help in solving the energy problem our society is facing. Photocatalytic water splitting for hydrogen production is an example of solar energy storage into chemical bonds. The hydrogen produced in this way can then be employed as carbon free fuel creating the “Hydrogen Cycle”. This work investigates the structure and the activity of graphitic carbon nitride (g-C₃N₄), an organic semiconductor that proved a suitable photocatalyst for hydrogen production from water. Synthesised by thermal polycondensation of melamine it is a graphitic like material with a band gap of 2.7 eV which makes it a visible light active catalyst. In a first instance the effect of the synthesis conditions on its structure and morphology are investigated to find the optimum parameters. The temperature of condensation is varied from 450°C up to 650°C and the length from 2.5 h to 15 h. The structural changes are monitored via X-ray diffraction (XRD) and elemental analysis while the effect on the morphology and the band gap of g-C₃N₄ are investigated by mean of scanning electron microscopy and UV-Vis absorption. Subsequently, a study of the crystal structure of the catalyst is carried out. Using structures proposed in the literature, X-ray diffraction and neutron scattering simulations are used to narrow down the number of possible 3D structures. After structural characterisation, the activity of g-C₃N₄ for photocatalytic hydrogen evolution is evaluated. It is confirmed that loading 1 wt.% Pt on its surface significantly increases the hydrogen evolution rate. The attention then focuses on the loading procedures, the reduction pre treatments of the co-catalyst and the reasons of the different performances when different procedures are employed. The catalytic system is characterised by mean of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and XRD. By investigating the composition and the morphology of the platinum nanoparticles under different conditions, the main factors responsible for the changes in activity of g-C₃N₄ for hydrogen evolution are identified. Additionally, the role of the co catalyst and its interaction with g-C₃N₄ is also elucidated. Finally, taking forward the knowledge acquired on the Pt-g-C₃N₄ system, the effect on the hydrogen evolution rate of alloying platinum with a second metal (Cu, Ag, Ni and Co) is studied. The nanoparticles are characterised by XRD and TEM. A screening of the loading procedures and bimetallic systems is performed to identify the most promising for photocatalytic hydrogen evolution with the aim of bringing them towards further investigation.
6

Ta₃N₅/Polymeric g-C₃N₄ as Hybrid Photoanode for Solar Water Splitting:

Liu, Mengdi January 2018 (has links)
Thesis advisor: Dunwei Wang / Water splitting has been recognized as a promising solution to challenges associated with the intermittent nature of solar energy for over four decades. A great deal of research has been done to develop high efficient and cost-effective catalysts for this process. Among which tantalum nitride (Ta₃N₅) has been considered as a promising candidate to serve as a good catalyst for solar water splitting based on its suitable band structure, chemical stability and high theoretical efficiency. However, this semiconductor is suffered from its special self-oxidation problem under photoelectrochemical water splitting conditions. Several key unique properties of graphitic carbon nitride (g-C₃N₄) render it an ideal choice for the protection of Ta₃N₅. In this work, Ta₃N₅/g-C₃N₄ hybrid photoanode was successfully synthesized. After addition of co-catalyst, the solar water splitting performance of this hybrid photoanode was enhanced. And this protection method could also act as a potential general protection strategy for other unstable semiconductors. / Thesis (MS) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
7

The Role of Bandgap in the Secondary Electron Emission of Small Bandgap Semiconductors: Studies of Graphitic Carbon

Nickles, Neal E. 01 May 2002 (has links)
The question of whether the small bandgaps of semiconductors play a significant role in their secondary electron emission properties is investigated by studying evaporated graphitic amorphous carbon, which has a roughly 0.5 eV bandgap, in comparison with microcrystalline graphite, which has zero bandgap. The graphitic amorphous carbon is found to have a 30% increase in its maximum secondary electron yield over that of two microcrystalline graphite samples with comparable secondary electron yields: highly oriented pyrolytic graphite and colloidal graphite. The potentially confounding influence of the vacuum level has been isolated through the measurement of the photoelectron onset energy of the materials. Other less significant materials parameters are also isolated and discussed. Based on these measurements, it is concluded the magnitude of bandgap may have an appreciable effect on the magnitude of the secondary electron yield and further studies of this effect with annealed graphitic amorphous carbon are warranted. In support of this work, a hemispherical two-grid, retarding field electron energy analyzer has been designed, constructed, and characterized for the present work. The advantages and disadvantages of the analyzer are discussed in comparison to other methods of measuring secondary electron emission. The analyzer has a resolution of ±(1.5 eV + 4% of the incident electron energy). A novel effort to derive theoretical, absolute correction factors that compensate for electron losses within the analyzer, mainly due to the grid transmission, is presented. The corrected secondary electron yield of polycrystalline gold is found to be 30% above comparable experimental studies. The corrected backscattered electron yield of polycrystalline gold is found to be 14% above comparable experimental studies. Corrected secondary yields for the microcrystalline graphite samples are found to range from 35-70% above those found in five experimental studies in the literature. The theoretical correction factors are estimated to have a 4-6% uncertainty. Reasons for the large discrepancy in yield measurements with the analyzer are discussed and thought to be due mainly to the lack of similar corrective factors in the previous studies. The supporting instrumentation is fully characterized, including a detailed error analysis.
8

Porphyrins, graphitic carbon nitride and their hybrids for photocatalytic solar fuel generation

Li, Lingling 20 May 2020 (has links)
Photocatalytic solar fuel generation is the most green, sustainable and viable approach to deal with both the ever-growing energy crisis and environmental issues, simultaneously. The work presented in this thesis is focused on the development of new organic carbonaceous semiconductors, typically, carbon quantum dots (CQDs) and graphitic carbon nitride (g-C3N4), and porphyrin small molecules and their hybrids with graphitic carbon nitride, meanwhile, their application in the field of photocatalytic solar fuel generation. In the chapter 1, a general review about background and mechanism of photocatalytic solar fuel generation are introduced first. Next, the features and developments of porphyrin and graphitic carbon nitride for the photocatalytic redox reaction are discussed. In chapter 2, the synthesis, characterization methods and photocatalytic experiment in details are described. In chapter 3, gram-scale CQDs are facilely synthesized by simple thermal treatment of citric acid monohydrate, and microporous 1D nanorods of g-C3N4 are prepared through template-free chemical approach. The photocatalytic properties of 1D protonated g-C3N4 (HCN) modified with different amount of CQDs were evaluated by the rate of H2- evolution under visible light irritation. The results demonstrate that g-C3N4/CQDs with the optimal CQDs amount of 0.25 wt.% afford the highest H2-production rate of 382 μmol h-1 g-1 with apparent quantum yield (AQY) of 1.9% which was about 3-fold of pure g- C3N4. The composite g-C3N4/CQDs show a remarkable stability against the photocorrosion within a continuous experiment period over 12h. The enhanced photocatalytic H2-production activity could be attribute to the intimate interface between CQDs and g-C3N4, which not only significantly improves the visible-light absorption, but also prolongs the lifetime of charge carriers and suppresses the recombination of photogenerated electron-hole pairs. This work showed that low-cost and metal-free CQDs could be an efficient photosensitizer to promote photocatalytic hydrogen generation. In chapter 4, we reported a new array of push-pull isomeric naphthalimide- porphyrins (ZnT(p-NI)PP) to investigate the effect of naphthalimide and molecular constitution on light driven hydrogen evolution from water splitting. These compounds were synthesized by integration of four naphthalimide moieties on meso-substituion of porphyrin macrocycle through para phenyl linker. Porphyrins were characterized by UV- Vis, Fluorescence and DFT calculations and compared with those of zinc tertapheylporphyrin (ZnTPP). When these porphyrins were employed as photocatalyst for the photocatalytic hydrogen production (PHP) with platinum co-catalyst, they delivered high hydrogen efficiency compared to that of ZnTPP. Particularly, ZnT(p-NI)PP exhibited 203 times higher hydrogen efficiency than the ZnTPP. This could be ascribed to the efficient exciton dissociation into holes and electrons at the photoexcited state of ZnT(p-NI)PP and then electrons were transferred to the proton through platinum. These results indicate that introduction of naphthalimide at meso-position of porphyrin through para phenyl linker is a versatile strategy to improve the photocatalytic hydrogen evolution of porphyrin based materials. In addition, the other two isomeric naphthalimide conjugated porphyrins through meta-and ortho-phenyl linker, ZnT(m-NI)PP and ZnT(o-NI)PP are also developed for photocatalytic H2 production. The para-linked isomer, ZnT(p-NI)PP delivered a much higher H2 production rate of 973 μmol h−1g -1 compared to that of ZnT(m-NI)PP (597 μmol h−1g −1) and ZnT(o-NI)PP (54 μmol h−1g −1), respectively. This could be attributed to the efficient intramolecular energy transfer from the naphthalimide to the porphyrin ring. In chapter 5, a series of NP/g-C3N4 hybrids of graphitic carbon nitride (g-C3N4) with naphthalimide-porphyrin (ZnT(p-NI)PP, labelled as NP) have been developed for photocatalytic hydrogen production. Planar naphthalimide-porphyrins are adsorbed onto flexible two-dimensional g-C3N4 through π-π stacking, which are characterized by scanning electronic microscopy and X-ray photoelectron spectroscopy. Except for its function as photosensitizer, NP in the hybrids could efficient inhibit the charge recombination by electron transfer for the lower lowest unoccupied molecular orbital of NP than g-C3N4, whereas facilitate energy transfer from g-C3N4 donor to NP acceptor for efficient overlap of emission spectrum of NP and absorption of g-C3N4. As a result, the hybrid containing weigh ratio of 2% NP (2%NP/g-C3N4) exhibits an enhanced photocatalytic hydrogen production rate (HPR) of 2297 μmol g−1 h −1, while pristine g- C3N4 shows a HPR of 698 μmol g−1 h −1. The 2%NP/g-C3N4 shows the best performance when compared with the reported hybrids of g-C3N4 with Zn(II) -tetrakis(4- carboxylphenyl) porphyrin (ZnTCPP/g-C3N4) and Zn(II)-tetrakis(4- hydroxyphenyl)porphyrin (ZnTHPP/g-C3N4) in photocatalytic hydrogen production under the same conditions. In the chapter 6, the future work on photocatalytic CO2 reduction, perspectives and conclusions are included
9

Dynamics of formation of Ru, Os, Ir and Au metal nanocrystals on doped graphitic surfaces

Pitto-Barry, Anaïs, Sadler, P.J., Barry, Nicolas P.E. 24 December 2015 (has links)
Yes / The fabrication of precious metal (ruthenium, osmium, gold, and iridium) nanocrystals from single atoms has been studied in real-time. The dynamics of the first stage of the metal nanocrystallisation on a doped (B,S)-graphitic surface are identified, captured, and reported. / We thank the Leverhulme Trust (Early Career Fellowship No. ECF-2013-414 to NPEB), the ERC (Grant No. 247450 to PJS), EPSRC (EP/F034210/1 to PJS).
10

Rational Design of Advanced Hybrid Nanostructures for Catalysis and Electrocatalysis

Barman, Barun Kumar January 2016 (has links) (PDF)
The hybrid nanostructures exhibit excellent performances in various fields such as catalysis, sensing, and energy conversion as compared to their individual ones. The thesis deals with the new methods for the synthesis of different type of hybrids with doped/pristine carbon nanostructures in the form of graphene, multiwall carbon nanotubes (MWCNTs) as one component and metals nanostructures (Ag, Pd, Pt and Au), carbide (Fe3C), metal chalcogenides (Ni3S2 and Co9S8) and oxide (CoO) as the other components. Various synthesis techniques such as modified galvanic replacement reaction at room temperature, hydrothermal, microwave and pyrolysis have been explored for the synthesis of different hybrid nanostructures. Furthermore, various hybrid nanostructures have been explored for various catalytic activities such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and 4-nitrophenol (4-NP) reduction. It may be noted that the ORR and OER which are undoubtedly vital for their applications in fuel cells, metal-air batteries and water oxidation reaction. Interestingly, the catalytic activities of these hybrid nanostructures are comparable or better as compared to the commercial benchmark precious catalysts.

Page generated in 0.0675 seconds