41 |
In Situ and Ex Situ Investigations of Transition Metal-Catalyzed Crystallization of Carbon and Silicon Thin FilmsWenisch, Robert 29 October 2018 (has links)
Transition metal interface effects of on the crystallization of carbon and silicon were investigated. The graphitization of carbon was studied by ion beam sputter deposition of atomic carbon onto a nickel surface at temperatures ranging from room temperature to 550 °C. The resulting films were characterized by X-ray photoelectron spectroscopy, nuclear reaction analysis combined with Rutherford backscattering spectrometry, Raman spectroscopy and transmission electron microscopy. A temperature-induced and a nickel-induced effect on the graphitic ordering is demonstrated. The carbon films showed a two layered structure: directly on the nickel surface up to 8 monolayers of graphitic carbon, further deposited carbon formed less ordered structures, preferably perpendicular to the surface. The results are discussed on the basis of hyperthermal atom deposition, surface diffusion, metal-induced crystallization and dissolution-precipitation. The analysis points to a dominating role of surface diffusion-assisted crystallization in the carbon ordering process.
The kinetics of silver-induced crystallization of amorphous silicon were studied in a series of isothermal annealing experiments at 350 °C, 400 °C, 450 °C and 500 °C. The annealing process was monitored in situ employing Raman spectroscopy and Rutherford backscattering spectrometry from which time resolved information on the phase transformation and hence the kinetics are obtained. The grain structure of the crystallized silicon film was investigated with optical and scanning electron microscopy which reveals grain diameters of 5 to 8 µm. The small scale crystallinity was measured with X-ray diffraction and crystal domain sizes from 20 to 50 nm were observed. The phase transformation kinetics are discussed based on the Johnson-Mehl-Avrami-Kolmogorov theory. The analysis points to a two-dimensional, diffusion limited process with fast Avrami-type nucleation and an activation energy of 0.8 eV/at.:Contents
1. Introduction
2. Metal-Induced Crystallization
2.1. Introduction and State of the Art of Metal-Induced Crystalliza-tion
2.2. Thermodynamics of Metal-Induced Crystallization
2.3. Kinetics of Metal-Induced Crystallization
3. Ion Beam Analysis
3.1. Rutherford Backscattering Spectrometry
3.2. Nuclear Reaction Analysis
4. Raman Spectroscopy
4.1. Light Scattering in Solids
4.2. Theory
4.2.1. The Raman Spectrum of Graphitic Carbon
4.2.2. The Silicon Raman Spectrum
5. The Cluster Tool at the Ion Beam Center
5.1. General Concept
5.2. Sputtering Chamber
5.3. The Environmental Chamber
5.4. The Analysis Chamber
5.5. The Ion Beam Analysis Chamber
5.5.1. The Experimental Setup
6. The Carbon Nickel System
6.1. Experimental Details
6.1.1. Film growth
6.1.2. Characterization
6.2. Results
6.3. Discussion
7. The Silicon Silver System
7.1. Experimental
7.1.1. Film Preparation
7.1.2. In Situ Raman Spectroscopy
7.1.3. In Situ Rutherford Backscattering Spectrometry
7.2. Results
7.2.1. Raman Spectroscopy
7.2.2. Rutherford Backscattering Spectrometry
7.2.3. X-ray Diffraction
7.2.4. Optical and Scanning Electron Microscopy
7.3. Discussion
8. Conclusion and Outlook
A. Appendix
A.1. Spectroscopic Lineshapes
A.1.1. The Lorentzian Lineshape
A.1.2. The Breit-Wigner-Fano Lineshape
A.1.3. The Doniach-Sunjic Lineshape
A.1.4. The Gaussian Lineshape
A.1.5. The Voigt Lineshape
A.2. Statistcial Distribution Functions
A.2.1. The Gamma Distribution
Bibliography / Der Einfluss von Übergangsmetallkontaktflächen auf die Kristallisation von Kohlenstoff und Silizium wurde untersucht. Dazu wurde Kohlenstoff bei Temperaturen von Raumtemperatur bis 550 °C auf Nickel mittels Ionenstrahl-Sputtern abgeschieden. Die so erzeugten Filme wurden mit Röntgenphotoelektronen Spektroskopie, Kernreaktionsanalyse kombiniert mit Rutherford Rückstreu Spektrometrie, Raman Spektroskopie und Transmissions-Elektronenmikroskopie charakterisiert. Ein Nickel- und ein Temperatureffekt auf den Graphitisierungsprozess wird nachgewiesen. Die Kohlenstofffilme zeigten einen zweilagigen Aufbau: Direkt auf der Nickeloberfläche bis zu 8 Monolagen graphitischen Kohlenstoffs, weiterer abgeschiedener Kohlenstoff bildet weniger geordnete Strukturen, die bevorzugt senkrecht zur Oberfläche ausgerichtet sind. Die Ergebnisse werden auf Basis von hyperthermischer, atomarer Abscheidung, Oberflächendiffusion, Metall-induzierte Kristallisation und Lösung-Ausfällung diskutiert. Die Analysen deuten auf eine dominante Rolle der Oberflächendiffusion im Graphitisierungsprozess hin.
Die Kinetik der Silber-induzierten Kristallisation von amorphen Silizium wurde in einer Reihe von isothermalen Temperexperimenten bei 350 °C, 400 °C, 450 °C und 500 °C untersucht. Der Tempervorgang wurde mit in situ Raman Spektroskopie und in situ Rutherford Rückstreu Spektrometrie charakterisiert, wodurch zeitaufgelöste Information über den Phasenübergang und damit die Kinetik gewonnen wurden. Das Gefüge der entstandenen Siliziumschichten wurde mit optischer und Rasterelektronenmikroskopie untersucht, welche Korndurchmesser von 5 bis 8 µm zeigten. Die Kristallinität wurde mit Röntgendiffraktometrie analysiert. Hierdurch wurden Kristallitgrößen von 20 bis 50 nm bestimmt. Die Kinetik des Phasenüberganges wird anhand der Johnson-Mehl-Avrami-Kolmogorov Theorie diskutiert. Dies deutet auf einen zeidimensionalen, diffusionslimitierten Prozess mit schnell abklingender Avrami-Keimbildung hin. Die Aktivierungsenergie wurde zu 0.8 eV/At. bestimmt.:Contents
1. Introduction
2. Metal-Induced Crystallization
2.1. Introduction and State of the Art of Metal-Induced Crystalliza-tion
2.2. Thermodynamics of Metal-Induced Crystallization
2.3. Kinetics of Metal-Induced Crystallization
3. Ion Beam Analysis
3.1. Rutherford Backscattering Spectrometry
3.2. Nuclear Reaction Analysis
4. Raman Spectroscopy
4.1. Light Scattering in Solids
4.2. Theory
4.2.1. The Raman Spectrum of Graphitic Carbon
4.2.2. The Silicon Raman Spectrum
5. The Cluster Tool at the Ion Beam Center
5.1. General Concept
5.2. Sputtering Chamber
5.3. The Environmental Chamber
5.4. The Analysis Chamber
5.5. The Ion Beam Analysis Chamber
5.5.1. The Experimental Setup
6. The Carbon Nickel System
6.1. Experimental Details
6.1.1. Film growth
6.1.2. Characterization
6.2. Results
6.3. Discussion
7. The Silicon Silver System
7.1. Experimental
7.1.1. Film Preparation
7.1.2. In Situ Raman Spectroscopy
7.1.3. In Situ Rutherford Backscattering Spectrometry
7.2. Results
7.2.1. Raman Spectroscopy
7.2.2. Rutherford Backscattering Spectrometry
7.2.3. X-ray Diffraction
7.2.4. Optical and Scanning Electron Microscopy
7.3. Discussion
8. Conclusion and Outlook
A. Appendix
A.1. Spectroscopic Lineshapes
A.1.1. The Lorentzian Lineshape
A.1.2. The Breit-Wigner-Fano Lineshape
A.1.3. The Doniach-Sunjic Lineshape
A.1.4. The Gaussian Lineshape
A.1.5. The Voigt Lineshape
A.2. Statistcial Distribution Functions
A.2.1. The Gamma Distribution
Bibliography
|
42 |
Untersuchungen zum Einfluss von Elektrodenkennwerten auf die Performance kommerzieller graphitischer Anoden in Lithium-Ionen-BatterienZier, Martin 11 November 2014 (has links)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der elektrochemischen Prozesse an der Elektrodengrenzfläche und im Festkörper graphitischer Anoden für Lithium-Ionen-Batterien. Der Zusammenhang zwischen den intrinsischen Eigenschaften des Aktivmaterials und den resultierenden Eigenschaften von Kompositelektroden stand dabei im Fokus der Untersuchungen.
Die Temperaturabhängigkeit von Materialeigenschaften (Diffusionskoeffizient, Austauschstromdichte) und Elektrodeneigenschaften (Verhalten unter Strombelastung) wurde in einem Bereich von 40 °C bis -10 °C erfasst. Dazu werden elektrochemische Charakterisierungsmethoden aus der Literatur vorgestellt und hinsichtlich ihrer Gültigkeit für die Anwendung an realen Elektroden evaluiert. Die elektrochemisch aktive Oberfläche wurde bestimmt und stellte sich als ausschlaggebender Parameter für die Bewertung der Elektrodenprozesse heraus.
Auf Basis korrigierter Elektrodenoberflächen konnten Austauschstromdichten für die konkurrierenden Prozesse Lithium-Interkalation und -Abscheidung ermittelt werden. Zusammen mit Kennwerten zur Keimbildungsüberspannung für Lithium-Abscheidung flossen die ermittelten Kennwerte in eine theoretische Berechnung des Zellstroms ein. Es konnte gezeigt werden, dass die Lithium-Abscheidung kinetisch deutlich gegenüber der Lithium-Interkalation bevorzugt ist, nicht nur bei niedriger Temperatur.
Die Übertragbarkeit wissenschaftlicher Grundlagenexperimente auf kommerzielle Systeme war bei allen Versuchen Gegenstand der Untersuchungen. In einem separaten Beispiel einer Oberflächenmodifikation mit Zinn wurde diese Problematik besonders verdeutlicht.
Zusätzlich wurde die parasitäre Abscheidung von Lithium auf graphitischen Anoden hinsichtlich der Nachweisbarkeit und Quantifizierung evaluiert. Hierfür wurde eine neue Untersuchungsmethode im Bereich der Lithium-Ionen-Batterie zur besseren Detektion von Lithium-Abscheidung und Grenzflächen-Morphologie mittels Elektronenmikroskopie entwickelt.
Die Osmiumtetroxid (OsO4) Färbung ermöglichte eine deutliche Verbesserung des Materialkontrasts und erlaubte somit eine gezielte Untersuchung von graphitischen Anoden nach erfolgter Lithium-Abscheidung. Darüber hinaus konnte die selektive Reaktion des OsO4 für eine genauere Betrachtung der Solid Electrolyte Interphase genutzt werden. Eine Stabilisierung der Proben an Luft und im Elektronenstrahl konnte erreicht werden. / This work sheds light on the electrochemical processes occurring at commercially processed graphitic anodes. It raises the question whether values published in literature for mostly ideal electrode systems can be readily taken for simulation and design of real electrodes in high-energy cells. A multiple step approach is given, evaluating different methods to determine electrode and material properties independently. The electrochemically active surface area was shown to be a crucial parameter for the calculation of electrode kinetics. Using exchange current densities corrected for the electrode surface area, the overall charging current in a cell could be calculated. The resulting part of lithium deposition in the charging process is strikingly high, not only at low temperatures.
To further investigate lithium deposition in terms of morphology and quantity, a method was developed for graphitic anodes. Osmium tetroxide (OsO4) staining serves well as a tool to strongly increase material contrast in electron microscopy. Thus lithium dendrites could be made visible in an unprecedented manner. Furthermore, the selective chemical reaction of osmium tetroxide allows for a better investigation of the multi-layer solid electrolyte interphase as was shown in transmission electron microscopy. Using the staining method, a stabilization of the sample under air and in the electron beam could be achieved.
|
Page generated in 0.0372 seconds