• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 32
  • 10
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ELECTRODE AND ELECTROLYTE ADDITIVES FOR LIFETIME EXTENSION IN LITHIUM-ION BATTERIES

Narayana, Kishore Anand 01 January 2014 (has links)
Lithium-ion batteries (LIBs) are the most commonly used type of rechargeable batteries with a global market estimated at $11 billion, which is predicted to grow to $60 billion by 2020. The global commercialization of Li-ion batteries is impeded by issues such as poor cycle life (5000 cycles achieved in some LIBs) in high energy and power density applications because of the rising internal resistance due to aging and safety concerns such as overcharge which ultimately leads to thermal runaway and explosions. A battery’s performance mainly depends on external factors such as electrode thickness and degree of compacting, and the type of conductive additive and electrolyte mixture used, and internal factors such as its internal temperature and state of charge. The performance suffers due to aging or erroneous mechanisms such as decomposition of the electrode or electrolyte material affecting the lifetime. In this thesis, an attempt is made to improve the lifetimes of the Li-ion batteries by incorporating suitable electrolyte additives, which were incorporated in the battery electrolyte to prevent overcharge. Also, several conductive electrode additives were incorporated as filler materials in an anode to explore the effects on its discharge capacities.
12

Methane Storage In Activated Carbon Nanostructures : A Combined Density Functional And Monte Carlo Study

Dutta, Debosruti 07 1900 (has links) (PDF)
Natural gas is stored as compressed natural gas (CNG) in heavy steel cylinders under pressures of 200-250 atm. However, such a method of storage has certain disadvantages which include multistage compression costs, limited driving range and safety aspects. Hence, alternative methods of storage such as adsorbed natural gas (ANG) which involve adsorbing natural gas at moderate pressures and room temperatures in a suitable nanoporous material are currently being explored. In this thesis, we have isolated model carbon nanostructures and defect geometries most likely to be found in these materials and investigated their specific interactions with methane. The thesis is concerned with ab-initio density functional theory calculations on these various model carbon nanostructures in order to identify the potential candidates that enhance methane adsorption. The adsorption energies of methane on graphite and graphene sheets were similar, with a value of 12.3 kJ/mol for graphene. The Stone-Wales defect in graphene was found to increase the methane adsorption energy to 37.2 kJ/mol, and small surface undulations on the graphene sheet resulted in a smaller increase (16 kJ/mol) in the adsorption energy relative to graphene. The presence of an interstitial carbon was found to significantly reduce the adsorption energy to 5.2 kJ/mol. The enhanced adsorption energy in the case of the Stone-Wales defect was attributed to the significant charge redistribution in the vicinity of the defect. A variety of functional groups such as carboxylic acid (COOH), carbonyl (CO), phenol (OH), pyran (-O-), phenone (=O), peroxide (OOH) and amine (NH2) groups have been observed on carbon surfaces. Extensive density functional calculations of methane adsorbed on various chemically functionalized graphene nanoribbons were carried out to evaluate their methane adsorption energies. A significant finding in this study, is the increased adsorption energies (relative to graphene) that occur for the functional groups containing the OH moiety. The adsorption energies for edge functionalized graphene nanoribbons are 27.6 and 69.7 kJ/mol for COOH and OOH functionalization. Additional computations reveal a strong correlation between the induced dipole moment on methane and the strength of the adsorption energies obtained for the extended nanoribbons. Adsorption isotherms for methane were obtained using grand canonical Monte Carlo simulations for slit-like graphitic pores with and without functional groups. For both OH and COOH functionalized graphite, we observe more than a 40 % increase in the volumetric loading over bare graphite for the highest weight % of the functional group and smallest pore width considered. The maximum volumetric loading decreases with a decrease in the wt% of the functional groups and with an increase in the pore width.
13

Nanoscale Heterogeneities in Visible Light Absorbing Photocatalysts: Connecting Structure to Functionality Through Electron Microscopy and Spectroscopy

January 2019 (has links)
abstract: Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various performance metrics, can be combined to elucidate functionality at multiple length scales. In this work, two promising visible light harvesting systems are studied in detail: Pt-functionalized graphitic carbon nitrides (g-CNxHys) and TiO2-supported CeO2-x composites. Electron energy-loss spectroscopy (EELS) is used to sense variations in the local concentration of amine moieties (defects believed to facilitate interfacial charge transfer) at the surface of a g-CNxHy flake. Using an aloof-beam configuration, spatial resolution is maximized while minimizing damage thus providing nanoscale vibrational fingerprints similar to infrared absorption spectra. Structural disorder in g-CNxHys is further studied using transmission electron microscopy at low electron fluence rates. In-plane structural fluctuations revealed variations in the local azimuthal orientation of the heptazine building blocks, allowing planar domain sizes to be related to the average polymer chain length. Furthermore, competing factors regulating photocatalytic performance in a series of Pt/g-CNxHys is elucidated. Increased polymer condensation in the g-CNxHy support enhances the rate of charge transfer to reactants owing to higher electronic mobility. However, active site densities are over 3x lower on the most condensed g-CNxHy which ultimately limits its H2 evolution rate (HER). Based on these findings, strategies to improve the cocatalyst configuration on intrinsically active supports are given. In TiO2/CeO2-x photocatalysts, the effect of the support particle size on the bulk/nanoscale properties and photocatalytic performance is investigated. Small anatase supports facilitate highly dispersed CeO2-x species, leading to increased visible light absorption and HERs resulting from a higher density of mixed metal oxide (MMO) interfaces with Ce3+ species. Using monochromated EELS, bandgap states associated with MMO interfaces are detected, revealing electronic transitions from 0.5 eV up to the bulk bandgap onset of anatase. Overall, the electron microscopy/spectroscopy techniques developed and applied herein sheds light onto the relevant defects and limiting processes operating within these photocatalyst systems thus suggesting rational design strategies. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
14

Thermal Characterization of Graphitic Carbon Foams for Use in Thermal Storage Applications

Drummond, Kevin P. January 2012 (has links)
No description available.
15

Influence of boron doping on the dynamics of formation of Os metal nanoclusters on graphitic surfaces

Pitto-Barry, Anaïs, Barry, Nicolas P.E. 07 May 2019 (has links)
Yes / The fabrication of osmium nanoclusters from single atoms has been studied in real-time on B-doped and B-free graphitic surfaces. The dynamics of nucleation on both surfaces are identified, captured, and reported. The nucleation is ca. 2× faster on B-doped surface compared to the B-free surface (38 pm min−1versus 18 pm min−1), suggesting osmium–boron interactions within the nanomaterials.
16

Polynuclear complexes as precursor templates for hierarchical microporous graphitic carbon: An unusual approach

Kobielska, Paulina A., Telford, Richard, Rowlandson, J., Tian, M., Shahin, Z., Demessence, A., Ting, V.P., Nayak, Sanjit 17 July 2018 (has links)
Yes / A highly porous carbon was synthesized using a coordination complex as an unusual precursor. During controlled pyrolysis, a trinuclear copper complex, [CuII3Cl4(H2L)2]·CH3OH, undergoes phase changes with melt and expulsion of different gases to produce a unique morphology of copper-doped carbon which, upon acid treatment, produces highly porous graphitic carbon with a surface area of 857 m2 g–1 and a gravimetric hydrogen uptake of 1.1 wt % at 0.5 bar pressure at 77 K. / EPSRC (EP/R01650X/1 for VPT, and EP/E040071/1 for MT) and the University of Bristol
17

Applications of mesostructured carbonaceous materials as supports for fischer-tropsch metal catalyst

Mbileni, Charity Nonkululeko 21 February 2007 (has links)
Student Number : 0303610W - PhD thesis - School of Chemistry - Faculty of Science / Mesoporous MCM-48 was synthesized and used as a template to synthesize mesoporous carbon (MC) materials. Polystyrene, the carbon source, together with sulfuric acid and toluene were added to the template (160 oC for 6 h) and this procedure generated a low surface area carbon supported/MCM-48 material. A repeat addition and carbonization step was needed to form the precursor carbon/MCM-48 material that was pyrolysed at 900 oC to generate graphitic mesoporous carbon materials. After removal of the silica template, mesoporous carbons were characterized by XRD, HR-TEM, Raman spectroscopy and surface area analysis. The effect of the amount of polystyrene as well as the role of the pyrolysis temperature on the final product was investigated. This synthesis methodology can readily be controlled to produce partially ordered graphitic mesoporous carbon supports with predictable pore width and surface area. The methane selectivity was low (below 6%) and stable, and the overall olefin fraction was found to be good for all the supported catalysts studied. The potassium promoter increased the hydrocarbon chain growth to C68 giving α-1 and α-2 both between 0.79 and 0.90 for all supported catalysts with an exception of MCM-48 supported Fe catalyst that selectively produced hydrocarbons up to C28.
18

Determination of biomarkers for lipid peroxidation and oxidative stress : Development of analytical techniques and methods

Claeson Bohnstedt, Kristina January 2005 (has links)
<p>Oxidative stress can be defined as a state of disturbance in the pro-oxidant/antioxidant balance in favour of the former, leading to potential damage. Processes associated with oxidative stress involve reactive oxygen species and radicals and can result in elevated levels of oxidatively modified or toxic molecules that can cause cellular malfunction, and even cell death. Destruction of membrane lipids, lipid peroxidation, caused by reactive oxygen species and radicals has been coupled to many diseases and also normal ageing. </p><p>The measurement of low molecular weight biomarkers of oxidative stress present in complex matrices such as brain tissue, plasma, urine or cerebrospinal fluid is a delicate and difficult task and there is a need for improved analytical tools in this field of research. </p><p>The major foci of this thesis and the work underlying it are the development of analytical techniques and methods for determining biomarkers for oxidative stress and lipid peroxidation. Aspects of particular concern include the effects of sample treatments prior to analysis, evaluation of the developed methods with respect to possible artefacts, and the scope for results to be misinterpreted. The specific research goals and issues addressed are detailed in five papers, which this thesis is based upon.</p><p><b>Paper I</b> focuses on malondialdehyde, describing and evaluating two new simplified sample pre-treatment regimes for the determination of malondialdehyde in rat brain tissue by capillary electrophoresis with UV detection. The effects of sample storing and handling are also considered.</p><p><b>Paper II</b> describes the synthesis, characterization and implementation of a new internal standard for the determination of malondialdehyde in biological samples using electrophoretic or chromatographic separation techniques. The usefulness of the internal standard is demonstrated in analyses of rat brain tissue samples.</p><p><b>Paper III</b> presents a method for the determination of 4-hydroxynon-2-enal in brain tissue from rats employing micellar electrokinetic chromatography separation and laser-induced fluorescence detection. </p><p><b>Paper IV</b> is focused on the development of a new methodology for determining the stereoisomeric F2-isoprostanes in human urine samples employing chromatographic separation on porous graphitic carbon and detection by electrospray ionization-tandem mass spectrometry. The results from this study conflict with the hypothesis that peripheral isoprostanes are elevated in patients with Alzheimer’s disease.</p><p><b>Paper V</b> describes porous graphitic carbon chromatography-tandem mass spectrometry for the determination of isoprostanes in human cerebrospinal fluid. A new simplified sample pre-treatment regime, involving a column switching technique, is presented that allows direct injection of a relatively large volume of CSF into the chromatographic system.</p>
19

Determination of biomarkers for lipid peroxidation and oxidative stress : Development of analytical techniques and methods

Claeson Bohnstedt, Kristina January 2005 (has links)
Oxidative stress can be defined as a state of disturbance in the pro-oxidant/antioxidant balance in favour of the former, leading to potential damage. Processes associated with oxidative stress involve reactive oxygen species and radicals and can result in elevated levels of oxidatively modified or toxic molecules that can cause cellular malfunction, and even cell death. Destruction of membrane lipids, lipid peroxidation, caused by reactive oxygen species and radicals has been coupled to many diseases and also normal ageing. The measurement of low molecular weight biomarkers of oxidative stress present in complex matrices such as brain tissue, plasma, urine or cerebrospinal fluid is a delicate and difficult task and there is a need for improved analytical tools in this field of research. The major foci of this thesis and the work underlying it are the development of analytical techniques and methods for determining biomarkers for oxidative stress and lipid peroxidation. Aspects of particular concern include the effects of sample treatments prior to analysis, evaluation of the developed methods with respect to possible artefacts, and the scope for results to be misinterpreted. The specific research goals and issues addressed are detailed in five papers, which this thesis is based upon. <b>Paper I</b> focuses on malondialdehyde, describing and evaluating two new simplified sample pre-treatment regimes for the determination of malondialdehyde in rat brain tissue by capillary electrophoresis with UV detection. The effects of sample storing and handling are also considered. <b>Paper II</b> describes the synthesis, characterization and implementation of a new internal standard for the determination of malondialdehyde in biological samples using electrophoretic or chromatographic separation techniques. The usefulness of the internal standard is demonstrated in analyses of rat brain tissue samples. <b>Paper III</b> presents a method for the determination of 4-hydroxynon-2-enal in brain tissue from rats employing micellar electrokinetic chromatography separation and laser-induced fluorescence detection. <b>Paper IV</b> is focused on the development of a new methodology for determining the stereoisomeric F2-isoprostanes in human urine samples employing chromatographic separation on porous graphitic carbon and detection by electrospray ionization-tandem mass spectrometry. The results from this study conflict with the hypothesis that peripheral isoprostanes are elevated in patients with Alzheimer’s disease. <b>Paper V</b> describes porous graphitic carbon chromatography-tandem mass spectrometry for the determination of isoprostanes in human cerebrospinal fluid. A new simplified sample pre-treatment regime, involving a column switching technique, is presented that allows direct injection of a relatively large volume of CSF into the chromatographic system.
20

Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation

Wang, Jing January 2015 (has links)
As a potential solution to the global energy and environmental pollution, design and synthesis of artificial photocatalysts with high activities have attracted increasing scientific interests worldwide. In recent years, the graphitic carbon nitride (g-C3N4) has shown new possible applications in the photocatalytic field due to its unique properties. However, the photocatalytic efficiency of the pristine g-C3N4 is greatly limited by the high recombination rate of the photo-induced electron-hole pairs. In this thesis, the aim is to design and fabricate efficient g-C3N4 based photocatalysts with enhanced photocatalytic activities under a visible light irradiation. In order to achieve this goal, two strategies have been employed in the present thesis. First, the as-obtained g-C3N4 was used as the host material to construct staggered-aligned composite photocatalysts by selecting semiconductors with suitable band positions. By this method, three kinds of g-C3N4-based composite photocatalysts such as g-C3N4/ZnS nanocage, g-C3N4/m-Ag2Mo2O7 and g-C3N4/MIL-88A were successfully fabricated. Second, the microstructure of the g-C3N4 was modified by the H2O2-treatment at an elevated temperature and ambient pressure. In this study, the g-C3N4 was prepared by a simple pyrolysis of urea. As for all the as-synthesized phtocatalysts, the structures, morphologies and the optical properties were carefully characterized by the following techniques: XRD, SEM, TEM, FT-IR and DRS. Also, the band edge positions of m-Ag2Mo2O7 and MIL-88A were studied by the Mott-Schottky methods. Thereafter, the photocatalytic activities were evaluated by using a solution of rhodamine B (RhB) as a target pollutant for the photodegradation experiments performed under a visible light irradiation. The results showed that all the aforementioned g-C3N4-based photocatalysts exhibited enhanced photocatalytic activities in comparison with the pristine g-C3N4. For the case of the g-C3N4-based composite photocatalysts, the enhancement factor over the pristine g-C3N4 can achieve values ranging from 2.6 to 3.4. As for the H2O2-treated g-C3N4, the degradation rate constant can be 4.6 times higher than that of the pristine g-C3N4. To understand the key factors in new materials design, we also devote a lot of efforts to elucidate the basic mechanisms during the photocatalytic degradation of organic pollutant. Based on the results of the active species trapping (AST) experiments, the main active species in each photocatalytic system were determined. In the g-C3N4/m-Ag2Mo2O7 and the g-C3N4/MIL-88A system, three kinds of active species of ·O2-, h+ and ·OH were found to be involved in the photocatalytic reaction. Among them, the ·O2- and h+ were the main active species. In the g-C3N4/ZnS and H2O2-treated g-C3N4 photocatalytic systems, the main active species was determined as the ·O2-. The reaction pathways of these active species were also demonstrated by comparing the band edge positions with the potentials of the redox couple. In addition, the relationship between the active species and the photocatalytic behaviors of N-de-ethylation and conjugated structure cleavage were studied. Finally, possible mechanisms to explain the enhanced photocatalytic activities were proposed for each photocatalytic system. The results in this thesis clearly confirm that the photocatalytic activity of the g-C3N4 based photocatalyst can efficiently be enhanced by constructions of staggered-aligned composites and by modification of the microstructure of the g-C3N4. The enhanced photocatalytic performance can mainly be ascribed to the efficient separation of the photo-induced electron-hole pairs and the increase of the active sites for the photocatalytic reaction. / <p>QC 20150909</p>

Page generated in 0.04 seconds