• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1161
  • 291
  • 244
  • 221
  • 109
  • 103
  • 30
  • 28
  • 28
  • 28
  • 28
  • 28
  • 28
  • 24
  • 22
  • Tagged with
  • 2908
  • 337
  • 315
  • 280
  • 246
  • 183
  • 159
  • 152
  • 151
  • 149
  • 142
  • 140
  • 127
  • 126
  • 121
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Far field migration of radionuclides in groundwater through geologic media

TING, DANIEL K.S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:30:33Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:21Z (GMT). No. of bitstreams: 1 01264.pdf: 8485096 bytes, checksum: 06ebf0338345738ac37beff9370e1213 (MD5) / Tese (Doutoramento) / IPEN/T / University of California, Berkeley, USA
672

Determinacao de sup210 Pb e sup210 Po em aguas minerais radioativas

NIERI, ARTIDORO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:40:56Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:27Z (GMT). No. of bitstreams: 1 04024.pdf: 3628243 bytes, checksum: 85a871f2396f235238f333eefec1e8ab (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
673

Determinacao de sup226Ra e sup228Ra em aguas minerais da regiao de Aguas da Prata

OLIVEIRA, JOSELENE de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:30Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:31Z (GMT). No. of bitstreams: 1 05171.pdf: 1226633 bytes, checksum: a8a8ac2deed7ddd884b8a9228185c81d (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
674

Planning for a Small Team of Heterogeneous Robots: from Collaborative Exploration to Collaborative Localization

Butzke, Jonathan Michael 01 November 2017 (has links)
Robots have become increasingly adept at performing a wide variety of tasks in the world. However, many of these tasks can benefit tremendously from having more than a single robot simultaneously working on the problem. Multiple robots can aid in a search and rescue mission each scouting a subsection of the entire area in order to cover it quicker than a single robot can. Alternatively, robots with different abilities can collaborate in order to achieve goals that individually would be more difficult, if not impossible, to achieve. In these cases, multi-robot collaboration can provide benefits in terms of shortening search times, providing a larger mix of sensing, computing, and manipulation capabilities, or providing redundancy to the system for communications or mission accomplishment. One principle drawback of multi-robot systems is how to efficiently and effectively generate plans that use each of the team members to their fullest extent, particularly with a heterogeneous mix of capabilities. Towards this goal, I have developed a series of planning algorithms that incorporate this collaboration into the planning process. Starting with systems that use collaboration in an exploration task I show teams of homogeneous ground robots planning to efficiently explore an initially unknown space. These robots share map information and in a centralized fashion determine the best goal location for each taking into account the information gained by other robots as they move. This work is followed up with a similar exploration scheme but this time expanded to a heterogeneous air-ground robot team operating in a full 3-dimensional environment. The extra dimension adds the requirement for the robots to reason about what portions of the environment they can sense during the planning process. With an air-ground team, there are portions of the environment that can only be sensed by one of the two robots and that information informs the algorithm during the planning process. Finally, I extend the air-ground robot team to moving beyond merely collaboratively constructing the map to actually using the other robots to provide pose information for the sensor and computationally limited team members. By explicitly reasoning about when and where the robots must collaborate during the planning process, this approach can generate trajectories that are not feasible to execute if planning occurred on an individual robot basis. An additional contribution of this thesis is the development of the State Lattice Planning with Controller-based Motion Primitives (SLC) framework. While SLC was developed to support the collaborative localization of multiple robots, it can also be used by a single robot to provide a more robust means of planning. For example, using the SLC algorithm to plan using a combination of vision-based and metric-based motion primitives allows a robot to traverse a GPS-denied region.
675

3D LOCALIZATION FOR LAUNCH VEHICLE USING COMBINED TOA AND AOA

Kwon, Soonho, Kim, Donghyun, Han, Jeongwoo, Kim, Dae-Oh, Hwang, Intae 10 1900 (has links)
Generally, a ground telemetry station for launch vehicle (LV) has tracking function only; therefore, position measurements depend on radar. Time of arrival (TOA) and angle of arrival (AOA) are typical location techniques for emitting targets. In this paper, we propose a Combined TOA and AOA localization method for LV using two ground stations. When transmitter (Tx) time is not known, it is necessary to make virtual onboard timer for TOA estimation. The virtual onboard timer generates time stamps of streaming frame according to data rate. First station which is located in space center has no tracking function. But it can generate the virtual onboard timer. Second station has tracking function, so it generates AOA information. By solving sphere equation(s) of TOA from at least one station and a line equation of AOA, target position in three-dimensions (3D) can be obtained. We confirm the localization performance by means of comparison with an on-board GPS of a real launch mission.
676

Near Field Investigation of Borehole Heat Exchangers

Erol, Selcuk 08 December 2015 (has links)
As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the ground, become more important. The backfilling materials of BHEs, particularly, the grout material must provide a suitable thermal contact between the ground and the heat carrier fluid in the high density polyethylene (HDPE) pipes and ensure durability to the induced thermal stresses due to the heat loading. In addition, for the heating purposes of buildings, BHEs immerged in groundwater may be operated below the freezing point of water with anti-freeze mixture in the pipe, leading to freezing-induced ice pressure which may damage the grout.In order to propose a proper grouting for BHEs, the thermo-hydro-mechanical behavior of the grout and its interferences with the adjacent ground conditions must be evaluated in the near field, and the thermal interactions of each BHE in a multi-BHEs field in the long-term operations must also be considered at a further field.Primarily, we have evaluated the performance of various grouting materials, through thermal, hydraulic and mechanical laboratory characterizations. In particular, we have proposed a homemade grout material, with the addition of graphite powder to improve the thermal properties of grout material. In parallel, the characteristics of two different widely used commercial grouting materials (i.e. calcite-based and silica-sand based materials) have been also investigated. In the subsequent study, the heat flow rate per meter of a BHE and the borehole resistance of borehole heat exchangers are assessed experimentally in a 1×1×1 m3 sandbox under, successively, dry sand and fully water-saturated sand conditions. During the operations, the monitored temperatures in the sandbox are in good agreement with analytical predictions. This study demonstrated that the homemade admixture prepared with 5 % natural flake graphite can be considered as an appropriate grout for BHEs regarding to its rheological and thermo-physical properties. Thermally-enhanced grouting can be of significant interest in a high thermal conductivity ground (such as saturated sand) because it minimizes the thermal resistance of the BHE.After characterizing and testing the efficiency of various grout materials, the thermal stresses occurred in BHEs due to heat injection or extraction has been investigated with the analytical solution of hollow cylinder model that is adapted for time-dependent heat loading, the geometry of a BHE, and the thermo-mechanical properties of surrounding ground conditions. Firstly, the hollow cylinder model has been solved for the considered boundary conditions in 2D plane stress. Secondly, the temperature differences at the inner and outer circles of the cylinder is evaluated with the heat line source models for continuous and discontinuous loadings to observe the impact of the heat loading schedule. The developed analytical solution for thermal stress investigation is validated with numerical models. It is demonstrated that the analytical solutions agree well with numerical results for two types of BHE configurations (co-axial and single U-shaped pipes). Furthermore, the calculated maximum stresses are compared with the tensile strength of grout materials obtained from Brazilian tests. It is predicted that thermal contraction of the grout, partially constrained by the surrounding rock, generates tensile stresses that may lead to cracking in the BHE. According to the results, the stiffness of rock has primary role on the developed tensile stresses, and the relationship between the thermal conductivity of the ground and of the grout induces a proportional impact on the magnitude of thermal stresses.Another major concern is the freeze-resistance of the grout materials, when the system is operated for heating purposes. Firstly, we conducted an experimental setup in a small-scale sandbox to understand the behavior of the grout material by evaluating the permeability change during freeze-thaw cycles of a BHE. According to the results, the permeability of grout materials did not change after 10 freeze-thaw cycles due to the thermal transfer with the adjacent soil partially reducing the impact of freezing in the grout material. Therefore, in order to test the freeze-resistance of a BHE, we have investigated the freezing impact of pore water pressure and thermal stress with analytical models and experimental setups on BHEs. For the theoretical approach, an analytical solution has been developed by using the hollow cylinder model that accounts for both the HDPE pipe and the grout material. Firstly, the freezing pore water pressure is adapted to the generalized Hooke’s law equations in 2D plane stress, and secondly the model is solved for the considered boundary conditions. In order to validate the developed model, the experimental setup is conducted in agreement with the geometry of the considered analytical model and the BHE probes are prepared with three different grout materials having large difference in the thermal and hydraulic characteristics (i.e. silica-sand based, calcite based and the homemade enhanced thermally with natural flake graphite powder). According to the experiments for 50 h of freezing operation, the calcite based grout and the homemade grout, having lower permeability and relatively higher porosity, are fractured. In contrast, the silica-sand based grout having higher permeability did not exhibit any damage. Compared with the theoretically obtained results, the observations from the experiments are consistent with the calculated stress results. The effective tangential stress induced by the freezing pore water pressure causes the crack development and agrees with the crack patterns. As a conclusion, the porosity and the permeability play a significant role on the grout failure.In a multi-BHEs field, the thermal interaction between each BHE may have a significant influence on the near-field investigation results in long-term operations. Therefore, in order to complete the near-field investigation, a far-field long-term operation study is required. However, existing analytical solutions for thermal analysis of ground source heat pump (GSHP) systems evaluate temperature change in the carrier-fluid and the surrounding ground in the production period of a single BHE only if a continuous heat load is assigned. In this study, we modified the Green’s function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain both for single and multi-BHEs field. The adapted analytical models for discontinuous heat extraction are verified with numerical finite element code. The comparison results agree well with numerical results both for conduction and advection dominated heat transfer systems, and analytical solutions provide significantly shorter runtime compared to numerical simulations (approx. 1500 times shorter). Furthermore, we investigated the sustainability and recovery aspects of GSHP systems by using proposed analytical models under different hydro-geological conditions. According to the engineering guideline VDI 4640, a linear relationship between thermal conductivity of the ground and the sustainable heat extraction rate is demonstrated for multi-BHEs. In addition, we developed an MATLAB interface for users in which the analytical model can be used easily and more efficiently.In addition, in order to extend the case studies for a ground including several layers, we proposed a finite line source model for BHEs that takes into account conduction/advection/dispersion mechanism in multilayer porous media. Firstly, the anisotropy is added to the moving finite line source model, and we used an existing composite model approach for conductive multilayer ground. The comparison with the numerical model results demonstrates the suitability of the approach. The proposed model can provide a faster solution than classical numerical approaches and help to optimize the heat extraction rate in multilayer media. However, further investigations are required to validate the model with the field measurements. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
677

Problematika farmak v podzemních vodách / Pharmaceuticals issues in groundwaters

Šrot, Martin January 2016 (has links)
Main objective of the diploma thesis was to observe the concentrations of selected types of drugs in the environment around the area of the village Horní Beřkovice. This goal was achieved by monitoring of the drugs concentration in surface and ground waters at Horní Beřkovice site. Monitoring system allowed to detect the passage of pollution from the source of the contamination, through sewage treatment plant, the unsaturated zone and aquifer to a potential user of contaminated groundwater. The diploma thesis is based on the field data from TACR project. I have analyzed data from the six samplings at the area of the village Horní Beřkovice with regard to the observed drugs or their residues in surface and ground waters. I have compared the results with data from the sewage treatment plants in the river basin of Želivka. Keywords: ground water, surface water, sewage treatment plant, drugs, contamination
678

EARTHQUAKE DESIGN GROUND MOTION OF INDONESIA BASED ON SOIL INVESTIGATION AND STRUCTURAL DAMAGE / 地盤調査と地震被害に基づくインドネシアの耐震設計用入力地震動の設定に関する研究

RUSNARDI RAHMAT PUTRA 26 March 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16788号 / 工博第3509号 / 新制||工||1531(附属図書館) / 29463 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 清野 純史, 教授 小池 武, 准教授 古川 愛子 / 学位規則第4条第1項該当
679

Running-in of gears - surface and efficiency transformation

Sosa, Mario January 2017 (has links)
With ever shorter development times and market demands on overall system performance such as efficiency, reliability and low maintenance, accurate predictive tools are necessary and gear drives prove to be no exception. All these characteristics have an impact on a process which has remained a riddle: running-in. Even though no consensus on a definition of this phenomena is readily available, this thesis examines efficiency, surface roughness and simulation through the optics of running-in. Geared transmissions are known for their formidable efficiency and their extreme reliability. However, with an ever increasing power density, the ability to accurately predict mesh losses becomes of utmost importance. The accurate quantification of bearing losses as well as efficiency of ground and superfinished gears under dip lubrication are examined with respect to running-in. Results show a considerable influence on the calculation of gear mesh losses originating from which bearing loss model is chosen. Furthermore, when a larger running-in load is used on ground gears, an increase in efficiency can be observed during working operation, while for superfinished no significant changes are found. These efficiency/frictional changes are also shown to occur in the initial cycles of the running-in phase. From a surface transformation point of view running-in is shown to be a reduction of asperity tips in case hardened ground gears, while in superfinished gears no changes were seen. These gear surface changes were measured with a novel method with a surface profilometer in-situ before, after running-in and after efficiency testing. Results also show that such changes in ground gear roughness profile occur during the very initial cycles. In order to predict running-in, a simulation method was developed. Such method utilizes a 2D surface integral method to simulate contact between rough surfaces, but requires the use of surface hardness and an accurate lower cutoff wavelength. This cutoff wavelength proved to play a pivotal role in determining an accurate contact pressure at the proper level of granularity, hence a well defined real contact area. The predicted and measured run-in surfaces are compared and are found to be in accordance with each other. / <p>QC 20170928</p>
680

[en] AN ASSESSMENT OF THE USE OF PROCESSED OIL GROUND AS LIVER MATERIAL OF LANDFILLS / [pt] AVALIAÇÃO DO USO DE BORRA OLEOSA PROCESSADA EM SISTEMAS DE IMPERMEABILIZAÇÃO DE ATERROS

SIMONE HARTH OLIVEIRA 09 September 2002 (has links)
[pt] Este trabalho tem como objetivo apresentar uma avaliação do uso de borra oleosa processada como material de construção em sistemas de impermeabilização de Aterros Sanitários. O estudo se baseia em resultados de ensaios de laboratório e em dados fornecidos pela PETROBRAS, além de informações da literatura, as quais foram utilizadas para prever a mobilidade do contaminante e os principais mecanismos de interação entre este e a borra.Foi desenvolvido um equipamento para a realização de ensaios de transporte em laboratório, que permite a determinação dos parâmetros de transporte do contaminante no solo. / [en] The purpose of this thesis is to present an evaluation of the use o processed oil ground as a building material for barrier systems in Landfill facylities. The study is based on experimental laboratory results and on PETROBRAS data, besides literature data, which have been used for predicting the contaminant mobility and the main mechanisms of its interaction with the soil.An equipment has been developed to carry out laboratory tests on confined soil samples using water and a contaminant solution as the percolating fluid, which allows the determination of the transport parameters of the contaminant in the soil.

Page generated in 0.0426 seconds