• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 73
  • 73
  • 42
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study of building response and damage due to mining-induced ground movements /

Yu, Zhanjing, January 1990 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1990. / Vita. Abstract. Includes bibliographical references (leaves 235-239). Also available via the Internet
12

The effect of temperature on mine rocks

Snider, James Wilson, January 1947 (has links) (PDF)
Thesis (M.S.)--University of Missouri, School of Mines and Metallurgy, 1947. / The entire thesis text is included in file. Typescript. Title from title screen of thesis/dissertation PDF file (viewed June 29, 2010) Includes bibliographical references (p. 50-51).
13

ANALYSES FOR DESIGN AND SUPPORT OF COAL MINE INTERSECTIONS

Sinha, Sankhaneel 01 December 2016 (has links)
Rock bolts have been extensively used as a support element in coal mines in the US for about 40 years. Longwall development and partial extraction room-and-pillar mining systems now rely heavily on fully-grouted roof bolts as the primary support with as needed inclined bolts, trusses, and cable bolts as secondary support. These two coal mining systems develop 3- and 4-way intersections during extraction processes. A study of Illinois (2004-2008) and US coal mines found that over 70% of roof falls occurred at intersections. It is therefore necessary to perform additional research in stress and displacement distributions around intersections and then design support systems to improve stability of intersections. This thesis research, in cooperation with a bolt supplier and NIOSH, analyses the stress and strain redistribution in and around intersections in typical lithologies in the Illinois Basin coal mines with the goal to develop a better understanding of failure initiation and propagation mechanisms with and without roof supports. Analyses were corroborated with field observations wherever possible. Non-linear continuum analyses using the Generalized Hoek-Brown failure criterion with rock mass properties is the foundation for these analyses. The first task (Task 1) toward these goals was to develop rock mass properties from available laboratory data using estimates of Geological Strength Index (GSI) for different lithologies. An important subtask was to perform an error analysis in estimates of rock mass properties assuming an amount of error in GSI estimates. Analyses and field observations were done for typical 4-way intersections at two mines in southern Illinois operating at depths of 150 m and 80 m, respectively in the No. 6 coal seam, which averages 1.8 m in thickness. Pre-mining horizontal stresses of 7.58 MPa and 4.13 MPa were applied in the E-W and N-S directions. These coal companies provided geologic logs and rock mechanics data for roof and floor strata. Rock mass engineering properties for different roof and floor lithologies were developed using estimated values of Geological Strength Index (GSI), and Hoek-Brown (H-B) rock mass failure parameters. A recent laboratory study provided normal and shear stiffness properties of the immediate roof interfaces within the bolting range of 1.8 m. MSHA-approved roof support plans were used for initial modeling. Short Encapsulation Pull Test (SEPT) data provided by bolt suppliers in the region were used to assign bolting system stiffness and strength parameters. Task 2 analyzed normal and shearing stresses and strains in and around mine intersections for typical pre-mining stress fields and then identified critical areas of failure initiation and progressive failure propagation. Failure initiation was hypothesized to occur for critical values of compressive (1 mm/m), tensile (0.5 mm/m), and shearing (0.5 mm/m) strains based on a review of laboratory stress-strain properties. This approach allows quantifying areas in and around an intersection where failures are likely to initiate with and without artificial supports. It computes three reinforcement factors with and without supports: reinforcement against tensile (RFT), compressive (RFC) and shearing (RFSS) strains. Task 3 assessed the performance of currently practiced roof support plans and identified where inadequacies exist and how they could be improved through spatial distribution of supports and their characteristics. Analyses were completed for two mines with one orientation of pre-mining horizontal stress field. The next logical step (Task 4) was to extend analyses in Task 3 to assess the effect of maximum compressive stress orientation in relation to entry direction (0o, 30o, 60o & 90o) and different cut sequences and their effect on changes in failure initiation and failure propagation mechanisms. Numerical analyses have shown that stress and strain distributions are significantly different when the cut sequence is included in models. For a horizontal stress ratio of two (2), the 60o orientation provided maximum stability. Separate models with all cuts excavated simultaneously corresponded well with the well-established NIOSH software AHSM and previous research. The effect of cut sequence combined with the directional effect of pre-mining stresses becomes evident from the dissimilar results. A separate statistical study was conducted on 211 SEPT test data provided by a roof support manufacturer and marketing company in the region. Goals were to analyze the database for grip factor (GF) and anchorage stiffness (AS) characteristics using histograms and frequency distributions and, perform regression analyses to relate GF and AS values on the basis of height above coal seam and bolt diameter. Results were used for one stochastic run with variable GF and AS values assigned to different bolts in a roof control plan. Results indicated Gamma distribution best fitted AS and GF data. It was thought that the reinforcement factor for such a bolting layout would be more realistic than assigning a single value of GF and AS to bolts in the model.
14

Validation of a dynamic simulation of an opencast coal mine

Muniappen, Kesavan January 2019 (has links)
A research report submitted in partial fulfilment of the requirements for the degree of Master of Science in Engineering, to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, 2019 / A dynamic simulation study is a critical deliverable of a mine project feasibility study. Mining houses rely on simulation to confirm that complex, integrated systems can achieve design capacity before investment decisions are made. Dynamic simulations are powerful tools, but only if they are developed using the right methodology, and with information that has been verified. The importance of work in the field of mine dynamic simulation validation was made clear during the early stages of this research report when it was identified that there is limited information available on the subject. Work conducted in the realm of validation can make an invaluable contribution to the success of future projects undertaken around the world. The last few years have been difficult for employees of some mining companies because of looming job cuts due to high production costs, high overheads, and decreasing product demand. For many mining companies, it was a case of survival which gave rise to the development of new strategies and innovative thinking. Coal Mine A Life of Mine (LOM) extension project is a prime example of innovative thinking. In this case, the project was approved for implementation when export coal prices were on the low end of the price cycle. The dynamic simulation of the full materials handling value chain conducted during the project was of utmost importance, and provided assurance to the project review team that annual production targets can be achieved. The simulation development methodology was based on a unique approach that reduced time spent on the simulation through the integration of different, independent models that represented sub-systems in the materials handling value chain. There was, therefore, a strong need to validate the simulation, which could lead to the adoption of this approach on future projects. In this research report, the LOM extension project scope and the mining activities conducted by Coal Mine A are explained, and a brief, but interesting history of Modelling and Simulation (M&S) is provided. The subject of M&S is vast and has evolved into its own separate discipline. M&S is an invaluable tool, and the importance of verification, validation and credibility is elaborated on. The development of the simulation and the inputs and outputs of the simulation are discussed before the validation effort. The work conducted on the validation aimed to confirm the accuracy of the simulation unequivocally. Although the production target was not achieved as predicted by the dynamic simulation during the period of validation, there was an indication that the materials handling value chain could perform as predicted as each of the individual sub-systems had achieved the design capacity. Problem areas were identified which could be attributed to the poor performance, and if these areas are addressed, the system could perform as predicted by the simulation. This confirms that dynamic simulation can add value to predictions about mining system performance such that informed decisions can be made. / TL (2020)
15

Design of a Mine Roof Strata Analyis Device

Russell, Andrew James Reksten 22 April 2015 (has links)
Because the roof lithology in an underground coal mine is typically variable and poorly known, the safety and efficiency of these mines is reduced. To address this shortcoming, a device for analyzing rock properties by way of scratching a mine roof borehole was designed and tested in multiple different media with the goal of determining in situ mine roof properties with a nondestructive technique. Tools were developed for measuring extraction force and position of the scratching mechanism and those values were compared versus time for multiple tests to look for changes in applied force over changing positions. Because of signal stability and inconsistencies in scratch depths the data were found to contain too much variation to determine any rock properties or changing rock conditions from the simulated roof material in the concrete block. However, further scratch tests in a sandstone block indicated that increasing the diameter of the wire scratchers (and therefore increasing their stiffness and accompanying normal force) from 0.045 inches to 0.055 inches increased the average pull force from 6.24 to 9.96 lbs. Similar to that test, a scratch test was performed in a PVC pipe where it was found that increasing the scratcher diameter from 0.045 inches to 0.051 inches increased the pull force from a 2.81 lb average to a 36.46 lb average, with considerably better gouging of the host material. / Master of Science
16

Microseismic Monitoring of a Room and Pillar Retreat Coal Mine in Southwest Virginia

Conrad, William Jennings 19 January 2016 (has links)
Ground control, one of the key elements in mine safety, is an issue that warrants continuous improvement in the underground coal industry. The United States experienced over 3,300 injuries and 42 deaths between 2006 and 2012 from the fall of a roof or rib (MSHA, 2015). Out of the underground coal mining methods, room and pillar retreat mining lacks significant research to adequately understand the rockmass behavior associated with the process. A microseismic monitoring system was installed in a retreat mine in Southwest Virginia to provide more information about the changing stress conditions created by retreating and ultimately reduce risk to miners. Microseismicity has been proven to be an acceptable method of monitoring stress redistribution in underground coal mines and assist in explaining rockmass behavior (Luxbacher, et al, 2007). An array of geophones was placed underground along a single retreat panel to record failures due to stress redistribution throughout one panel of retreat. These microseismic events were located, and their moment magnitudes were found. An analysis was completed to observe the redistribution of stress and related gob formation throughout the panel's retreat. Expectations for the gob formation were consistent with the distribution of microseismic events. Over 13,000 microseismic events were found in 1.5 months of monitoring. Approximately 2,800 of these events were well enough located to provide analysis of the changing underground stress conditions from the retreat process. On average, recorded microseismic events during retreat produced a moment magnitude of -0.9, with no events higher than a magnitude of 2.0. / Master of Science
17

DESIGN METHODS FOR ROCK BOLTS USING IN-SITU MEASUREMENT FROM UNDERGROUND COAL MINES

Kostecki, Todd 01 May 2019 (has links)
The research in this dissertation was undertaken because of a need for a more accurate, reliable and relatively simple method for determining the combined loading (i.e., axial, flexure and shear) along rock bolts. This combined load determination and understanding also resulted in a relatively simple and reliable new rock bolt design methodology. The new design method was based on a clearer understanding of the actual loading along a grouted rock bolt. To accomplish these research goals, double shear tests were conducted in the lab with reinforced concrete specimens, and field trials were conducted in room and pillar coal mines, with the aim to measure in-situ rock shear. Strain measurements were obtained using rock bolts instrumented with optical fibers that possessed high spatial resolution (≈ 1.25 – 2.5 mm). Corroboration with a past database of rock bolt measurements in shale aided in the deduction of the final support design method. The scientific contributions from this research include the conceptualization of a ground reaction curve that considers time effects such as rock relaxation, long term weakening effects, and lateral rock movement. A new explanation as to why rock bolts creep in practice (i.e., dislocation creep) is described based upon field measurements, which also indicated that the process of in-situ rock shear involves slow episodic movements. Specifically, there are localized compression (i.e., rock pinch) and tensile zones (i.e., dilatation) prior to the occurrence of plastic relief (i.e., rock slip). Finally, the design method is developed using simple factors (i.e., strain and shape factors) and loading conditions (e.g., installed load, rock slip) that occurred throughout the rock bolt’s design life. This approach results in a methodology that considers effects on reinforcement with time and combined loadings. The method is then extended by producing survival and hazard functions for rock bolts to ultimately reduce risk associated with design.
18

3-D numerical simulation and design of tensioned roof bolting for underground coal mines

Zhang, Yunqing, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xiv, 183 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 179-182).
19

Effect of in-situ stresses on the stability of coal mine development workings

Gadde, Murali Mohan. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xii, 130 p. : ill. (some col.), map (part col.). Includes abstract. Includes bibliographical references (p. 127-130).
20

A study of potash mining methods related to ground control criteria /

Molavi, M. A. January 1987 (has links)
No description available.

Page generated in 0.1215 seconds