• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 73
  • 73
  • 42
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A study of building response and damage due to mining-induced ground movements

Yu, Zhanjing 11 July 2007 (has links)
Several methods have been developed to predict mining-induced ground movements. Some of these methods, such as the profile and influence functions, have been used successfully in a number of applications. Prediction methods, however, do not address the response of surface buildings and structures to mining-induced ground movements. In order to study the response of a building to ground movements, a finite element model has been developed. The program named SRMP (Subsidence Response Modelling Program) is a large displacement, small strain, two dimensional finite element program. Such model is more appropriate than the commonly used small-displacement formulations and describes more accurately this particular problem because large displacements are involved in mining-induced ground movements. Four types of elements are employed in the program, namely plane, beam, transition and friction elements. Total Lagrangian (T.L.) formulation is used for plane elements and Updated Lagrangian (U.L.) formulation for beam, transition, and friction elements. The program consists of twenty six subroutines and requires about one mega-bytes of memory. It can model the slippage between foundation and subgrade. An important feature of SRMP is that it can simulate the excavation process continuously, without re-initiating the system variables and boundary conditions. Ground movement, building displacement, and stresses can be obtained, therefore, at each excavation stage. The accuracy of the finite element model was verified through field data. The slippage between foundation and subgrade was analysed in depth. Structural deformations and stresses induced by ground movements were also studied and damage criteria in term of ground displacements were proposed. Finally, based on the SRMP analyses, appropriate measures were developed which can provide better protection to surface structures affected by excavation-induced ground movements. / Ph. D.
32

A New Rock Bolt Design Criterion and Knowlwdge-based Expert System for Stratified Roof

Luo, JunLu 05 August 1999 (has links)
Since its development in the 1920s, bolting has become the most dominant support method in underground construction. However, because of the geological environment, the design process for roof bolt systems is an art rather than a science. To quantify the selection of bolting systems a MSBT (minimum solid beam thickness) approach was developed. The ultimate goal of this bolt design paradigm was achieved by optimizing bolt length, bolt density, and bolt pretension during installation. The impact of the number of strata layers within bolting range and pretension applied to bolts upon the stability of an opening was investigated using FLAC model. Four statistical models for predicting optimum bolt supports using a minimum solid beam thickness were established, and based on these results, a design criterion was proposed. To meet support needs in various geological and geotechnical settings, a variety of bolt types have been developed. The installation of such bolt-based support systems is often complex and specialized, and thus imposes a challenge for engineers to identify the specific cause and to take appropriate remedial measures once problems arise. To solve these problems, a knowledge-based expert system (KBES) has been developed. The knowledge base includes the data accumulated from years of laboratory and field investigations conducted by the Mine Safety and Health Administration of the US Department of Labor. A user-friendly Windows-based program was implemented using KAPPA environment. After identifying the problem, the KBES searches its knowledge base and reasons out the most likely, secondary, and other potential causes, then provides solutions according to users' input. The results of this research are validated and demonstrated using case studies. / Ph. D.
33

Experimental evaluation of polyester grout as a ground control measure in underground mines

Kan, Stephen Wai-Sing 09 May 2009 (has links)
Chemical grouting has been used to insure the stability of underground mine openings for more than twenty years. The polyurethane grout, which is currently being used, has a limited range of mechanical properties that restrict its utilization. Polyurethane also poses serious threats to miners' health due to its toxicity and flammability, To overcome many of these problems and limitations, research has been conducted on a newly developed polyester-based grout. The assessment of mechanical properties of polyester grout is the focus of this work. Field experiences and laboratory research have defined properties which an effective grouting material should possess. Experimental results indicate that the polyester grout meets or exceeds these recommended properties and has the potential to expand the applicability of chemical grouting in ground control. By adjusting its formulations, mechanical properties of polyester grout can be engineered to solve specific ground control problems. / Master of Science
34

Layout design for interactive zones in longwall multiple seam mining

Forrest, Peter 21 July 2010 (has links)
Appalachia requires design guidelines for the increasingly popular multi-seam longwall method. Entry layouts often depart from the ideal when finally developed. The thesis examines the occurrence of ground control problems, and possibilities for improvements in strata control, in a variety of undermining situations. The effects of upper seam loading on undermining operations are invest~gated using physical modelling. Photoelastic stress analysis is used as a powerful research tool to analyze complex multiple seam entry systems. Yield pillar use is also examined, in anticipation of their widespread application for ground control. Case examples support the research findings, and specific conclusions aim to assist layout design in interactive zones. / Master of Science
35

The stability of portals in rock

Rogers, Gary K. January 1989 (has links)
Portals are frequently an exceedingly difficult area in terms of ground control due to the near-surface, weathered, and highly discontinuous rock mass conditions. Surface and subsurface failures involving portals were analyzed using over 500 case histories which were organized into a database. Critical factors contributing to both stability and instability were isolated, and failures were classified according to location. Correlations between rock mass classes and types of portal failure were made and a four step stability analysis methodology defined. To determine critical sections of portal approach cuts for stability analysis, the Geomechanics Classification System was appended with discontinuity orientation adjustments. The most common type of failure for active portals, that of 'Crown Face Overbreak' failure, was investigated and modelled for design and support purposes. Results are confirmed using case study data. Excavation and support guidelines, based on database information the predicted failure zone from the 'Crown Face Overbreak' model are provided. / Ph. D.
36

Analysis, estimation and prediction of fading for a time-variant UAV-ground control station wireless channel for cognitive communications

Belal, Rafi 15 January 2016 (has links)
This thesis presents a design and implementation of a long-range communication subsystem for a UAV and a ground control station. The subsystem is a low-cost alternative employing a line of sight, local communication network for optimal communications between a low-altitude UAV and a portable ground control station. In this thesis, real world experiments are conducted to model the time-variant wireless channel between a low-altitude micro-UAV and a portable ground control station operating in an urban environment. The large-scale and small-scale fading coefficients are calculated and analyzed for this dynamic channel. The channel properties, along with the fading distribution parameters, are computed and analyzed for two most popular antenna configurations for UAV systems (Yagi to omnidirectional and omnidirectional to omnidirectional). For the Yagi-to-omnidirectional link, the effects of three major impacting factors i.e. propagation distance, antenna gains in specific spherical angles and polarization mismatch factor on the overall fading distribution is investigated. Through regression analysis, a multiple-regression model is derived that estimates the instantaneous fading parameter, given these channel conditions. For this model, a modified particle-swarm optimization algorithm is designed and implemented to estimate the underlying model coefficients, given the instantaneous fading information. The implementation of this algorithm, along with the regression model, demonstrates that a sufficient approximation of the fading parameter can be provided for any given wireless channel when the impacting factors and instantaneous fading information is available. / February 2016
37

PILLAR DESIGN FOR THE ORACLE RIDGE MINE.

Buckley, John Terry. January 1983 (has links)
No description available.
38

Design guidelines for pillar and rib pillar extraction in South African collieries

Beukes, Johannes Stephanus 20 July 2016 (has links)
A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, .tohannesburg, ill fulfilment of the requirements for the degree or Mester of Science in Engineering Johannesburg, 1992 / Pillar extraction using 'handgot' methods has been practised in South African collieries fOJ' many years. During the late Sixties pillar extraction with mechanized conventional equipment commenced, and approximately a decade later, continuous miners were introduced into pillar and rib pillar extraction panels. During the years that these mining methods were practised, a vast amount of experience was gained on the various collieries. Problems were experienced by various mines and the management of these mines made numerous alterations to the mining methods with varied degrees of success, Research was 0.150 conducted by COMRO and by V,\ri01l5 mines and mining house". Apart from the recommendations of Salamon and Oravecz (1976) on pillar design in stooping sections, little information has been published and, thus, little is generally available to mine managers, planners and operators to assist them in the layout and design for plllar and rib pillar extraction. A survey of all the pillar and rib pillar practises, past and present, has been conducted for collieries in South Africa and abroad and the successes, failures, problems experienced, changes made to the mining methods and the results of these changes have been documented. The problems and successes experienced, t~ similarities and difference between mines and mining methods, and the research flndlngs have been assessed and evaluated. Design guidelines relevant to the various methods of pillar and rib pillar extraction have been established to improve the safety and performance of pillar extraction operations. These guldellnea ate not intended to be prescriptive but are designed more to bring to the attention of the mine manager, planner and operator those fllctors which should be taken into consideration during the planning and operation \)f a pillar Ot rib pillar extraction panel. In addition to the strata related factors, the economics of the mining method is important to determine if it is beneficial to do secondary ext-action, and also to assist in optimlsing the secondary extraction. The design prlnclplns were therefore appUed to diffcrtmt panel layouts, pillar sizes and extraction sequences to determine the effect on the production costs.
39

Rib Cutting Resue Stoping, improvement on stoping rates and reduction in waste dilution compared with other known resue stoping methods on a Free State gold mine

Scholtz, Alwyn January 2018 (has links)
Mining of the Basal Reef at Jeanette Mine, is typically complicated due to an overlaying Khaki Shale (shale) that has unfavourable rock engineering properties. Shale has always been either left underground or mined as part of the orebody. The first approach can only be applied in areas where the quartzite beam (directly above the Basal Reef and below the shale) is of sufficient thickness to support the shale in the hanging wall. This method is known as undercutting. Alternatively, open stoping can be applied in areas where the shale and the Basal Reef is extracted concurrently and sent to the mill as diluted ore. Alternatively, a resue stoping method can be considered in areas where undercutting cannot be done, due to a thin quartzite middling. Resue stoping involves stowing or packing of the shale into the mined-out area and is not included as part of the hoisted rock. In the past, resue stoping was done by hand packing, which is unsuitable for a modern mine. As such, two mechanised resue stoping methods can be considered, namely; Longhole Resue Stoping and Rib Cutting Resue Stoping. Rib Cutting Resue Stoping utilises a continuous miner (“CM”) to remove the shale in a first pass, extract the reef during a second pass and backfilling the mined-out rib with shale. The use of a CM will significantly improve the extraction/mining rate, sidewall stability, backfill placement, dilution and overall safety. Longhole Resue Stoping utilises strike drives from where longholes are drilled into the shale and the reef in an up-dip direction moving on retreat. The shale is blasted with sufficient force into the mined-out area behind it, compacting it. The reef will be loaded by Load Haul Dumper (“LHD”) or dozer. It was determined that Rib Cutting Resue Stoping is more effective than Longhole Resue Stoping due to a higher extraction rate, lower dilution, reef loss reduction and improved shale sidewall stability. The operating angles and equipment height limits the application to only 51% of the available reef at Jeanette mine with favourable dip and thickness. Longhole Stoping can navigate hard rock, shale and increased dip angles; it can be applied to 91% of the available ore deposit. Longhole Resue Stoping and Rib Cutting Resue Stoping should both be considered as suitable stoping methods for Jeanette. / Thesis is submitted in partial fulfilment for the degree of Master of Science in Engineering to the Faculty of Engineering and the Built Environment, School of Mining Engineering, 2018 / XL2019
40

Análise da influência das configurações dos pontos de apoio e do voo na acurácia de ortofotomosaicos elaborados a partir de dados de VANT

Souza, Gabriel de January 2018 (has links)
Recentemente, o uso dos Veículos Aéreos Não Tripulados (VANTs) surgiu como uma ferramenta para a aquisição de dados geoespaciais. Os Modelos Digitais de Elevação (MDEs), as ortoimagens e os modelos tridimensionais gerados a partir de imagens de VANT são produtos cartográficos de grande utilidade para as mais diversas aplicações. Em vista das limitações dos VANTs e da recentidade desta ferramenta, este estudo visa determinar a correlação da configuração dos pontos de apoio e dos parâmetros do voo com a acurácia de ortofotomosaicos elaborados a partir de dados de VANT. Esta pesquisa utilizou dados de três levantamentos aerofotogramétricos distintos realizados com três aeronaves diferentes e considerou parâmetros relacionados à configuração dos pontos de apoio e à execução do voo. Foram gerados 200 ortofotomosaicos e 200 MDEs. Ao todo foram feitas 4616 observações de pontos de controle. Os resultados mostraram baixa correlação linear entre acurácia planimétrica e altimétrica. Os melhores resultados foram obtidos de forma inversa às alturas de voo. No geral, sob as condições de processamento utilizadas neste trabalho, recomenda-se o uso de 4 a 5 pontos de apoio por km², além do uso de voo cruzado. / Recently, the use of Unmanned Aerial Vehicle (UAV) emerged as a tool for geospatial data acquisition. Digital Elevation Models (DEMs), orthoimages and three- dimensional models generated from UAV images are cartographic products of great utility for many different applications. Considering the recency and limitations of UAV, this study aims at determining the correlation of ground control points and flight configuration with the accuracy of orthophotomosaics based on UAV data. This research used data from three different aerial surveys, performed with three different aircrafts, and considered parameters related to ground-control points distribution and to flight missions. 200 orthophotomosaics and 200 DEMs were generated and a total of 4616 ground-control points measurements were performed. Results did not show a linear correlation between planimetric and altimetric accuracy. The best correlation results were obtained inversely related to flight height. In general, under the processing conditions used in this work, we recommend the use of 4 control points per km² and a cross flight pattern.

Page generated in 0.2201 seconds