• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Surface Methods to Understand the Ohaaki Hydrothermal Field, New Zealand

Rissmann, Clinton Francis January 2010 (has links)
After water vapour, CO₂ is the most abundant gas associated with magmatic hydrothermal systems. The detection of anomalous soil temperature gradients, and/or a significant flux of magmatic volatiles, is commonly the only surface signature of an underlying high temperature reservoir. For both heat (as water vapour) and gas to ascend to the surface, structural permeability must exist, as the unmodified bulk permeability of reservoir rock is too low to generate the focussed fluid flow typical of magmatic hydrothermal systems. This thesis reports the investigation into the surface heat and mass flow of the Ohaaki hydrothermal field using detailed surface measurements of CO₂ flux and heat flow. Detailed surface measurements form the basis of geostatistical models that quantify and depict the spatial variability of surface heat and mass flow, across the surface of both major thermal areas, as high resolution pixel plots. These maps, in conjunction with earlier heat and mass flow studies, enable: (i) estimates of the pre-production and current CO₂ emissions and heat flow for the Ohaaki Field; (ii) interpretation of the shallow permeability structures governing fluid flow, and; (iii) the spatial relationships between pressure-induced ground subsidence and permeability. Heat flow and CO₂ flux surveys indicate that at Ohaaki the soil zone is the dominant (≥ 70% and up to 99%) pathway of heat and mass release to the atmosphere from the underlying hydrothermal reservoir. Modelling indicates that although the total surface heat and mass flow at Ohaaki is small, it is highly focused (i.e., high volume per unit area) relative to other fields within the Taupo Volcanic Zone (TVZ). Normalised CO₂ emissions are comparable to other volcanic and hydrothermal fields both regionally and globally. Despite 20 years of production, there is little difference between pre-production and current CO₂ emission rates. However, the similarity of CO₂ emission rates masks a 40% increase in CO₂ emissions from new areas of intense steaming ground that have developed in response to production of the field for electrical energy production. This increase in thermal ground emissions is offset by emission losses associated with the drying up of all steam heated pools and alkali-Cl outflows from the Ohaaki West (OHW) thermal area, in response to production-induced pressure decline. The location of surface thermal areas is governed by the occurrence of buried or partially emergent lava domes, whereas the magnitude of CO₂ flux, mass flow, and heat flow occurring within each thermal area is determined by the proximity of each dome (thermal areas) to major upflow zones. Buried or partially emergent silicic lava domes act as cross-stratal pathways for fluid flow, connecting the underlying reservoir to the surface, and bypassing several hundred metres of the poorly permeable Huka Falls Formation (HFF) caprock. For each dome complex the permeable structures governing fluid flow are varied. At Ohaaki West, thermal activity is controlled by a deep-rooted concentric fracture zone, developed during eruption of the Ohaaki Rhyolite dome. Within the steam-heated Ohaaki East (OHE) thermal area, flow is controlled by a high permeability fault damage zone (Broadlands Fault) developed within the apex of the Broadlands Dacite dome. Structures controlling alkali-Cl fluid flow at OHW also iii appear to control the occurrence and shape of major subsidence bowls (e.g., the Main Ohaaki Subsidence Bowl), the propagation of pressure decline to surface, and the development and localization of pore fluid drainage. Across the remainder of the Ohaaki field low amplitude ground subsidence is controlled by the extent of aquifer and aquitard units that underlie the HFF, and proximity to the margins of the hot water reservoir. The correlation between the extent of low amplitude ground subsidence and the margins of the field reflects the coupled relationship between the hot water reservoir and reservoir pressure. Only where thick vapour-phase zones buffer the vertical propagation of deep-seated pressure decline to the surface (i.e., OHE thermal area), is ground subsidence not correlated with subvertical structural permeability developed within the HFF. This thesis makes contributions to regional and global research on geothermal and hydrothermal systems by: (i) quantifying the origin, mass, and upward transport of magmatic carbon from geothermal reservoirs; (ii) assessing the changes to the natural surface heat and mass flow of the Ohaaki Field following 20 years of production; (iii) establishing the utility of surface CO₂ flux and heat flow surveys to identify major upflow zones, estimate minimum mass flow, and determine the enthalpy of reservoirs; (iv) providing insight into the hydrothermal, structural and lithological controls over hydrothermal fluid flow; (v) demonstrating the influence of extinct silicic lava domes as important structural elements in the localisation of hydrothermal fluid flow; (vi) identifying the hydrostructural controls governing the spatial variability in the magnitude of pressure-induced ground subsidence, from which predictive models of subsidence risk may be defined, and; (vii) developing new technologies and characterising methods used for detailed assessment of surface heat and mass flow.
2

Applications of Synthetic Aperture Radar (SAR)/ SAR Interferometry (InSAR) for Monitoring of Wetland Water Level and Land Subsidence

Kim, Jin Woo 27 September 2013 (has links)
No description available.
3

Linking land subsidence to soil types within Hue city in Central Vietnam

Braun, Andreas, Hochschild, Volker, Pham, Gia Tung, Nguyen, Linh Hoang Khanh, Bachofer, Felix 15 May 2020 (has links)
Coastal areas of Southeast Asia are progressively threatened by flooding as a consequence of more frequent precipitation extremes and rising sea levels. Especially urban areas are affected by flood risk which is additionally increased by surface subsidence related to building activities and groundwater extraction. However, the severity of subsidence as well as its triggers and environmental interrelations are only little understood. This study measures surface subsidence for Hue city by using persistent scatterer radar interferometry (PS-InSAR). A series of 53 images acquired by the Sentinel-1 radar satellite between 2018 and 2019 was analyzed to reliably retrieve surface changes at the millimeter scale. The overall displacement ranges between -25 and +10 millimeters per year. Its spatial distribution was then compared to the extent of different soil types in the study area to conduct an analysis of variance (ANOVA). The results confirmed a significant difference between the soil types with Plinthic Acrisols as the soil type having the largest negative average surface velocity. Possible triggers are the intrusion of slack water from the surrounding rice cultivation areas and construction activities which lead to increasing weight and soil compaction. The findings shall raise awareness for the topic and underline the demand for further research. / Mưa lớn và nước biển dâng là những nguyên nhân gây lũ lụt ngày càng nghiêm trọng ở các khu vực ven biển Đông Nam Á. Đặc biệt việc gia tăng công trình xây dựng và khai thác nước ngầm gây sụt lún bề mặt dẫn đến ngập lụt ở các vùng đô thị. Tuy nhiên, các nghiên cứu về mối tương quan giữa sụt lún bề mặt với các hiện tượng môi trường chưa được chú trọng nhiều. Trong nghiên cứu này, độ lún bề mặt của thành phố Hue được đo bằng phương pháp giao thoa radar tán xạ liên tục (PS-InSAR). Phân tích 53 ảnh vệ tinh Sentinel-1 từ năm 2018-2019 cho thấy sự thay đổi tổng thể bề mặt dao động từ -25mm đến 10mm mỗi năm. Phân tích phương sai (ANOVA) cho thấy sự thay đổi bề mặt khác nhau tùy từng loại đất, trong đó đất đỏ vàng (Plinthic Acrisols) có tốc độ sụt lún trung bình cao nhất. Các tác nhân có thể là do sự xâm nhập của nước từ các vùng trồng lúa xung quanh và các hoạt động xây dựng dẫn đến tăng trọng lượng và nén đất. Những phát hiện này là cơ hội nâng cao nhận thức về sự sụt lún bề mặt và cần được nghiên cứu thêm.

Page generated in 0.0795 seconds