• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptation Along Environmental Gradients: an Evaluation of Physiological Mechanisms and Ecological Constraints

Lindgren, Beatrice January 2007 (has links)
<p>For ectotherms living in seasonal environments, time available for development and growth is often constrained by the length of the growth season. Declining season length towards higher latitudes often select for latitudinal clines in development and growth rates, exhibiting increasing growth and developmental rates towards the north. However, the physiological and ecological factors enabling these clines are poorly understood.</p><p>Our study system included eight populations of <i>Rana temporaria</i> along a 1500 km latitudinal gradient. We found increased growth rates in populations at higher latitudes to be the result of higher growth efficiency, partly due to increased relative gut length. Populations with higher growth rates also exhibited lower standard metabolic rates, implying that fast-growing individuals are able to achieve high growth rates by spending less energy on maintenance metabolism under low activity conditions.</p><p>Predator densities, and antipredatory defenses in prey, are assumed to decrease towards higher latitudes. While all study populations responded to predator presence by decreasing activity and foraging, high latitude populations maintained higher activity levels in the presence of the predator. In trials with a free-ranging predator, high latitude tadpoles experienced higher mortality than those from the low latitudes. The higher activity level in the northern populations increases mortality under predation risk, but is probably needed to maintain high growth and development rates.</p><p>When competing over resources, tadpoles from the low latitude population were inferior competitors, as indicated by their longer development time when raised together with high latitude tadpoles. We found no effect of latitude on size-corrected burst speed. The general effect of predator presence on burst speed depended on food availability, with well fed tadpoles being faster in the absence, and food restricted being faster in the presence of a predator.</p>
2

Adaptation Along Environmental Gradients: an Evaluation of Physiological Mechanisms and Ecological Constraints

Lindgren, Beatrice January 2007 (has links)
For ectotherms living in seasonal environments, time available for development and growth is often constrained by the length of the growth season. Declining season length towards higher latitudes often select for latitudinal clines in development and growth rates, exhibiting increasing growth and developmental rates towards the north. However, the physiological and ecological factors enabling these clines are poorly understood. Our study system included eight populations of Rana temporaria along a 1500 km latitudinal gradient. We found increased growth rates in populations at higher latitudes to be the result of higher growth efficiency, partly due to increased relative gut length. Populations with higher growth rates also exhibited lower standard metabolic rates, implying that fast-growing individuals are able to achieve high growth rates by spending less energy on maintenance metabolism under low activity conditions. Predator densities, and antipredatory defenses in prey, are assumed to decrease towards higher latitudes. While all study populations responded to predator presence by decreasing activity and foraging, high latitude populations maintained higher activity levels in the presence of the predator. In trials with a free-ranging predator, high latitude tadpoles experienced higher mortality than those from the low latitudes. The higher activity level in the northern populations increases mortality under predation risk, but is probably needed to maintain high growth and development rates. When competing over resources, tadpoles from the low latitude population were inferior competitors, as indicated by their longer development time when raised together with high latitude tadpoles. We found no effect of latitude on size-corrected burst speed. The general effect of predator presence on burst speed depended on food availability, with well fed tadpoles being faster in the absence, and food restricted being faster in the presence of a predator.
3

Changing Bacterial Growth Efficiencies across a Natural Nutrient Gradient in an Oligotrophic Estuary

Kiger, Amber A 27 March 2015 (has links)
Recent studies have characterized coastal estuarine systems as important components of the global carbon cycle. This study investigated carbon cycling through the microbial loop of Florida Bay by use of bacterial growth efficiency calculations. Bacterial production, bacterial respiration, and other environmental parameters were measured at three sites located along a historic phosphorus-limitation gradient in Florida Bay and compared to a relatively nutrient enriched site in Biscayne Bay. A new method for measuring bacterial respiration in oligotrophic waters involving tracing respiration of 13C-glucose was developed. The results of the study indicate that 13C tracer assays may provide a better means of measuring bacterial respiration in low nutrient environments than traditional dissolved oxygen consumption-based methods due to strong correlations between incubation length and δ13C values. Results also suggest that overall bacterial growth efficiency may be lower at the most nutrient limited sites.
4

Bacterial use of allochthonous organic carbon for respiration and growth in boreal freshwater systems

Berggren, Martin January 2009 (has links)
Aquatic systems worldwide receive large amounts of organic carbon from terrestrial sources. This ‘allochthonous’ organic carbon (AlloOC) affects critical physical and chemical properties of freshwater ecosystems, with consequences for food web structures and exchange of greenhouse gases with the atmosphere. In the boreal region, loadings of AlloOC are particularly high due to leaching from huge organic deposits in boreal forest, mire and tundra soils. A main process of AlloOC turnover in aquatic systems is its use by heterotrophic bacteria. Applying a bioassay approach, I measured the respiration and growth (production) of bacteria in northern Sweden, in streams and lakes almost totally dominated by AlloOC. The objective was to elucidate how variations in AlloOC source, age, composition and concentration impact on its use by aquatic bacteria, and how AlloOC properties, in turn, are regulated by landscape composition and by hydrology. The bacterial respiration (30-309 µg C L-1 d-1) was roughly proportional to the concentration of AlloOC (7-47 mg C L-1), but not significantly related to AlloOC source or character. Bacterial production (4-94 µg C L-1 d-1), on the other hand, was coupled to the AlloOC character, rather than concentration. A strong coupling to AlloOC character was also found for bacterial growth efficiency (0.06-0.51), i.e. production per unit of assimilated carbon. Bacterial production and growth efficiency increased with rising concentrations of low molecular weight AlloOC (carboxylic acids, free amino acids and simple carbohydrates). While the total AlloOC concentrations generally were the highest in mire-dominated catchments, low molecular weight AlloOC concentrations were much higher in forested catchments, compared to mire-dominated. These patterns were reflected in a strong landscape control of aquatic bacterial metabolism. Moreover, high flow episodes increased the export of organic carbon from forests, in relation to the export from mires, stimulating the bacterial production and growth efficiency in streams with mixed (forest and mire) catchments. The potential of AlloOC to support efficient bacterial growth decreased on time-scales of weeks to months, as the AlloOC was aged in laboratory or lake in situ conditions. To conclude, landscape, hydrology and conditions which determine AlloOC age have large influence on bacterial metabolism in boreal aquatic systems. Considering the role of bacteria in heterotrophic food chains, these factors can have spin-off effects on the structure and function of boreal aquatic ecosystems.
5

Environmental Influences on Bacterio-phytoplanktonic Coupling and Bacterial Growth Efficiency in a Sub-tropical Estuary

Kotkowski, Rachel 01 April 2014 (has links)
Bacterio-phytoplanktonic coupling and bacterial growth efficiency (BGE) measurements were used to analyze microbial trophic dynamics and the influence of environmental factors in Florida Bay, Florida. Phytoplankton gross primary productivity (GPP) was measured using 24-hour in situ oxygen incubations; bacterial productivity (BP) was measured using 3H- thymidine incorporation. Weak bacterio-phytoplanktonic coupling was observed over the sampling period. BP was more influenced by local total nitrogen concentrations while GPP was more evenly distributed. BGE rates were low but consistent with marine and estuarine ecosystems worldwide. Results suggest that bacterioplankton growth in Florida Bay is relatively uncoupled from phytoplankton production, which may be due in part to the low levels of phytoplankton biomass in the water column, the large amount of seagrass-derived DOM production in this shallow lagoon, the loading of nitrogen and organic matter associated with terrestrial runoff, and/or their combination.
6

Effects of site management on nutrition, sustainability and productivity in a Eucalyptus Grandis stand in South Africa

Du Toit, Ben 11 August 2008 (has links)
Abstract will not load on to DSpace
7

Reguladores do metabolismo bacteriano em reservatórios tropicais / Environmental drivers of bacterial metabolism in tropical reservoirs

Silva, Roberta Mafra Freitas da 10 March 2017 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T13:00:56Z No. of bitstreams: 1 DissRMFS.pdf: 2091397 bytes, checksum: 9416d9552b0e519672969fe9b02432ff (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T13:01:05Z (GMT) No. of bitstreams: 1 DissRMFS.pdf: 2091397 bytes, checksum: 9416d9552b0e519672969fe9b02432ff (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-22T13:01:12Z (GMT) No. of bitstreams: 1 DissRMFS.pdf: 2091397 bytes, checksum: 9416d9552b0e519672969fe9b02432ff (MD5) / Made available in DSpace on 2017-08-22T13:01:18Z (GMT). No. of bitstreams: 1 DissRMFS.pdf: 2091397 bytes, checksum: 9416d9552b0e519672969fe9b02432ff (MD5) Previous issue date: 2017-03-10 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Reservoirs located in tropical regions are main carbon (C) sources to the atmosphere, and bacterial metabolism is a key process that regulates those emissions. However, studies on the environmental drivers of bacterial metabolism in tropical reservoirs are scarce. By measuring metabolic rates and the limnological parameters in four cascading reservoirs that form a trophic state gradient, we determined the environmental drivers of bacterial metabolism in a tropical region, and compared them with those found in the literature (mainly from temperate regions). Our multiple regression models selected variables related to the trophic state as the main drivers of bacterial production (BP) and bacterial growth efficiency (BGE). On the other hand, bacterial respiration (BR), and consequently bacterial carbon demand (BCD), were weakly and negatively correlated to dissolved organic carbon (DOC), contrasting with the literature data. BR was always high, especially in less productive reservoirs where planktonic communities were limited by phosphorus. Nutrient limitation, high temperatures and high incident light intensity increased the environmental hostility, and cells must invest more energy in maintenance mechanisms, which directs the metabolism towards BR. This was observed in the reservoirs studied, especially in the more oligotrophic environments (Nova Avanhandava and Três Irmãos) where BR was higher and ECB lower. Our results indicate that the regulatory mechanisms of bacterial metabolism may vary according to latitude. / Reservatórios de regiões tropicais são fontes de carbono (C) para a atmosfera e o metabolismo bacteriano é um processo fundamental na regulação dessas emissões. No entanto, estudos que elucidem os fatores ambientais que determinam o metabolismo bacteriano em reservatórios tropicais são ainda escassos. Neste estudo foram medidas taxas metabólicas e parâmetros limnológicos em quatro reservatórios em cascata que formam um gradiente de estado trófico, com o intuito de determinar os reguladores do metabolismo bacteriano em uma região tropical e compará-los com dados obtidos a partir da literatura disponível (principalmente de regiões temperadas). Nossos modelos de regressão múltipla selecionaram variáveis relacionadas ao estado trófico como os principais reguladores da produção bacteriana (PB) e da eficiência de crescimento bacteriano (ECB). Foi encontrada uma relação fraca e negativa entre a respiração bacteriana (RB) e o carbono orgânico dissolvido (COD), diferente dos dados da literatura. As taxas de RB foram sempre elevadas, especialmente em reservatórios menos produtivos, nos quais as comunidades planctônicas estavam limitadas por fósforo. A escassez de nutrientes, as elevadas temperaturas e a alta intensidade de luz incidente aumentam o grau de hostilidade, e as células devem investir mais energia em mecanismos de reparação, o que direciona o metabolismo para a RB. Isso foi observado nos reservatórios estudados, especialmente, nos ambientes mais oligotróficos (Nova Avanhandava e Três Irmãos) nos quais a RB foi mais elevada e a ECB mais baixa. Nossos resultados indicam que os mecanismos reguladores do metabolismo bacteriano podem variar de acordo com a latitude. / FAPESP: 14/14139-3 / FAPESP: 11/50054-4
8

The Role of Bacterioplankton in Lake Erie Ecosystem Processes: Phosphorus Dynamics and Bacterial Bioenergetics

Meilander, Tracey Trzebuckowski 20 November 2006 (has links)
No description available.
9

Patrons saisonniers de transformation du carbone et efficacité métabolique des communautés bactériennes du golfe d’Amundsen, Arctique canadien

Nguyen, Dan 10 1900 (has links)
Les réchauffements climatiques associés aux activités anthropiques ont soumis les écosystèmes arctiques à des changements rapides qui menacent leur stabilité à court terme. La diminution dramatique de la banquise arctique est une des conséquences les plus concrètes de ce réchauffement. Dans ce contexte, comprendre et prédire comment les systèmes arctiques évolueront est crucial, surtout en considérant comment les flux de carbone (C) de ces écosystèmes - soit des puits nets, soit des sources nettes de CO2 pour l'atmosphère - pourraient avoir des répercussions importantes sur le climat. Le but de cette thèse est de dresser un portrait saisonnier de l’activité bactérienne afin de déterminer l’importance de sa contribution aux flux de carbone en Arctique. Plus spécifiquement, nous caractérisons pour la première fois la respiration et le recours à la photohétérotrophie chez les microorganismes du golfe d’Amundsen. Ces deux composantes du cycle du carbone demeurent peu décrites et souvent omises des modèles actuels, malgré leur rôle déterminant dans les flux de C non seulement de l’Arctique, mais des milieux marins en général. Dans un premier temps, nous caractérisons la respiration des communautés microbiennes (RC) des glaces de mer. La connaissance des taux de respiration est essentielle à l’estimation des flux de C, mais encore limitée pour les milieux polaires. En effet, les études précédentes dans le golfe d’Amundsen n’ont pas mesuré la RC. Par la mesure de la respiration dans les glaces, nos résultats montrent des taux élevés de respiration dans la glace, de 2 à 3 fois supérieurs à la colonne d'eau, et une production bactérienne jusqu’à 25 fois plus importante. Ces résultats démontrent que la respiration microbienne peut consommer une proportion significative de la production primaire (PP) des glaces et pourrait jouer un rôle important dans les flux biogéniques de CO2 entre les glaces de mer et l’atmosphère (Nguyen et Maranger, 2011). Dans un second temps, nous mesurons la respiration des communautés microbiennes pélagiques du golfe d’Amundsen pendant une période de 8 mois consécutif, incluant le couvert de glace hivernal. En mesurant directement la consommation d'O2, nous montrons une RC importante, mesurable tout au long de l’année et dépassant largement les apports en C de la production primaire. Globalement, la forte consommation de C par les communautés microbiennes suggère une forte dépendance sur recyclage interne de la PP locale. Ces observations ont des conséquences importantes sur notre compréhension du potentiel de séquestration de CO2 par les eaux de l’Océan Arctique (Nguyen et al. 2012). Dans un dernier temps, nous déterminons la dynamique saisonnière de présence (ADN) et d’expression (ARN) du gène de la protéorhodopsine (PR), impliqué dans la photohétérotrophie chez les communautés bactérienne. Le gène de la PR, en conjonction avec le chromophore rétinal, permet à certaines bactéries de capturer l’énergie lumineuse à des fins énergétiques ou sensorielles. Cet apport supplémentaire d’énergie pourrait contribuer à la survie et prolifération des communautés qui possèdent la protéorhodopsine. Bien que détectée dans plusieurs océans, notre étude est une des rares à dresser un portrait saisonnier de la distribution et de l’expression du gène en milieu marin. Nous montrons que le gène de la PR est présent toute l’année et distribué dans des communautés diversifiées. Étonnamment, l’expression du gène se poursuit en hiver, en absence de lumière, suggérant soit qu’elle ne dépend pas de la lumière, ou que des sources de photons très localisées justifie l’expression du gène à des fins sensorielles et de détection (Nguyen et al., soumis au journal ISME). Cette thèse contribue à la compréhension du cycle du C en Arctique et innove par la caractérisation de la respiration et de l’efficacité de croissance des communautés microbiennes pélagiques et des glaces de mer. De plus, nous montrons pour la première fois une expression soutenue de la protéorhodopsine en Arctique, qui pourrait moduler la consommation de C par la respiration et justifier son inclusion éventuelle dans les modélisations du cycle du C. Dans le contexte des changements climatiques, il est clair que l'importance de l’activité bactérienne a été sous-estimée et aura un impact important dans le bilan de C de l'Arctique. / Arctic ecosystems are undergoing rapid changes, primarily due to unprecedented climatic warming as a function of anthropogenic activities, which threaten their short-term stability. One of the most dramatic impacts has been the loss and change in annual sea ice. Understanding and predicting how these systems will evolve is crucial, especially if considering how carbon (C) fluxes from these ecosystems – either net sinks or net CO2 sources for the atmosphere – could have important repercussions on global climate. The objective of this thesis is to establish a seasonal portrait of bacterial activity to characterize its contribution to Arctic carbon fluxes. Specifically, we quantify for the first time microbial respiration in sea-ice and the water column and explore the use of photoheterotrophy by microorganism over an annual cycle in the Amundsen Gulf of the Arctic Ocean. These components of carbon cycling remain poorly understood and infrequently directly measured. As a consequence they are either extrapolated or omitted from models, despite their significant role in C dynamics not only in the Arctic, but also in marine systems in general. First, we characterise respiration in sea-ice microbial communities (CR). An understanding of respiration rates is essential for accurate estimation of C fluxes, but the role of respiration in sea ice is poorly understood. This work represents the first comprehensive evaluation of respiration in polar sea ice to date. Using novel O2 consumption measurements in sea-ice, we found high respiration rates in sea-ice, 2 to 3 times higher than in the water column and bacterial production rates up to 25 times higher. These results show that microbial respiration can consume a significant portion of sea ice primary production (PP) and play a key role in biogenic CO2 fluxes between sea-ice and the atmosphere (Nguyen and Maranger, 2011). Second, we measure respiration of pelagic microbial communities of Amundsen Gulf over an eight-month period, including under the winter ice-cover. By measuring directly O2 consumption, we show high CR, measurable over the whole year and greatly surpassing C inputs from PP. Globally, high C consumption by microbial communities supports a high reliance on internal recycling of local PP. These observations have important consequences on our understanding of the CO2 sequestering potential of the Arctic Ocean (Nguyen et al., 2012) Finally, we describe the seasonal patterns in presence (DNA) and expression (RNA) of the proteorhodospin (PR) gene, involved in bacterial photoheterotrophy. The PR gene, combined with the retinal chromophore, allows bacteria to capture energy from light towards energetic or sensory purposes. This additional energy source could contribute to the survival and proliferation of bacterial communities expressing the gene in the highly variable polar environment. Although PR has been found in many oceans, this study represents a unique time-series that follows the seasonal distribution and expression of the gene in a natural marine system. We show that the PR gene was present over the whole study period and widely distributed in diverse bacterial communities. Surprisingly, we observed continued PR expression over winter, in the absence of sunlight. This suggests either that the PR’s expression does not depend on light or, that other very localized photon sources could justify PR expression for detection and sensory functions (Nguyen et al., submitted to the ISME journal). This thesis contributes to the understanding of Arctic carbon cycling and includes several novel elements such as the characterization of respiration and bacteria growth efficiency in both pelagic and sea-ice habitats. The use of an alternative C pathway by bacteria in the Polar ocean was also explored for the first-time in a time-series. The observed sustained expression of the PR gene in the Arctic could modulate C consumption by respiration and justify its inclusion in future models of C cycling. In a context of climate change, it is clear that bacterial activity has been underestimated and how this will change in a warmer Arctic will have a significant impact in the ecosystem’s overall C budget.
10

L'attività di monitoraggio bancario e il contributo alla crescita economica: Analisi empiriche del Sistema Bancario Italiano / BANK MONITORING ACTIVITY AND THE CONTRIBUTION TO THE ECONOMIC GROWTH: EMPIRICAL ANALYSES OF THE ITALIAN BANKING SYSTEM

CINCINELLI, PETER 06 March 2015 (has links)
La presente Tesi intende rispondere a tre domande di ricerca tra loro legate. La prima domanda ha l’obiettivo di studiare se il contributo dell’attività creditizia delle banche possa contribuire al rafforzamento del tessuto economico del Paese attraverso un impatto positivo sulla crescita del PIL. La seconda domanda ha l’obiettivo di stimare econometricamente una variabile proxy che esprima le risorse dedicate da ciascuna banca al controllo costante dei finanziamenti erogati, analizzandone il potenziale effetto sia sulla qualità del portafoglio prestiti delle banche sia sul grado di efficienza del processo bancario tradizionale stimato attraverso l’approccio parametrico della frontiera stocastica. La terza domanda ha l’obiettivo di studiare se una maggiore attività di monitoraggio bancario possa ridurre la probabilità di incorrere in sanzioni amministrative da parte della Banca d’Italia. Analizzando un panel bilanciato di 436 banche Italiane, nell’arco temporale 2000-2012, i risultati evidenziano: l’attività creditizia della banca, se di qualità, contribuisce alla crescita economica; l’intensità del processo di monitoraggio del credito rafforza la capacità di prevedere con anticipo futuri peggioramenti della qualità dei prestiti; una relazione positiva tra l’attività di monitoraggio e l’efficienza del processo produttivo bancario; una relazione negativa tra l’efficienza del processo produttivo bancario e le sanzioni amministrative comminate dalla Banca d’Italia. / The Thesis is based on three research questions. The first research investigates whether the lending growth, in the Italian banking system, could contribute to the economic growth and which banks (commercial, cooperative, mutual) show a more sustainable relationship with the economic environment. The second research develops a proxy based on labour input in the loan monitoring process. The proxy investigates: the resources devoted by banks to their loans monitoring activity; its influence on loans quality, its predictive aptitude in finding out anticipatory signals of credit quality worsening; its efficiency on the bank productive process. The third research analyses the relationship between the effective system of banking supervision (i.e., economic sanctions inflicted by the Bank of Italy) and the efficiency of the bank production process estimated through the stochastic frontier approach. Based on a balanced panel of 436 Italian banks, between 2000-2012, the results show: the lending growth may contribute to the economic environment; superior loan monitoring activity improves both future loan losses experience through the early detection and the management of problem loans; the monitoring activity increases the efficiency of the bank production process; the more economic sanctions are inflicted, the less the efficiency of the production process will be.

Page generated in 0.0916 seconds