• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen-bonding residues at the asymmetric dimer site of tRNAHis guanylyltransferase and their contributions to oligomeric state and activity

Eberley, William Arthur 27 July 2011 (has links)
No description available.
2

Catalytic and Biological Implications of The Eukaryotic and Prokaryotic Thg1 Enzyme Family

Matlock, Ashanti Ochumare 17 June 2019 (has links)
No description available.
3

A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNAHis:

Pöhler, Marie-Theres, Roach, Tracy M., Betat, Heike, Jackman, Jane E., Mörl, Mario 11 January 2024 (has links)
For flawless translation of mRNA sequence into protein, tRNAs must undergo a series of essential maturation steps to be properly recognized and aminoacylated by aminoacyl-tRNA synthetase, and subsequently utilized by the ribosome. While all tRNAs carry a 30 -terminal CCA sequence that includes the site of aminoacylation, the additional 50 -G-1 position is a unique feature of most histidine tRNA species, serving as an identity element for the corresponding synthetase. In eukaryotes including yeast, both 30 -CCA and 50 -G-1 are added post-transcriptionally by tRNA nucleotidyltransferase and tRNAHis guanylyltransferase, respectively. Hence, it is possible that these two cytosolic enzymes compete for the same tRNA. Here, we investigate substrate preferences associated with CCA and G-1-addition to yeast cytosolic tRNAHis, which might result in a temporal order to these important processing events. We show that tRNA nucleotidyltransferase accepts tRNAHis transcripts independent of the presence of G-1; however, tRNAHis guanylyltransferase clearly prefers a substrate carrying a CCA terminus. Although many tRNA maturation steps can occur in a rather random order, our data demonstrate a likely pathway where CCA-addition precedes G-1 incorporation in S. cerevisiae. Evidently, the 30 -CCA triplet and a discriminator position A73 act as positive elements for G-1 incorporation, ensuring the fidelity of G-1 addition.
4

Caractérisation des enzymes de formation de la coiffe du virus du Nil Occidental et du métapneumovirus humain / Characterization of capping enzyme of West Nile Virus and human metapneumovirus

Collet, Axelle 03 December 2015 (has links)
Ma thèse a porté sur l’étude des activités enzymatiques impliquées dans la formation de la coiffe de deux virus à ARN: le virus du Nil Occidental (WNV) et le métapneumovirus humain (hMPV). Ces virus codent pour des enzymes assurant l’ajout de la coiffe de type-1 (m7GpppN2’Om) à l’extrémité 5’ de leur ARNm.Le domaine N-terminal de la protéine NS5 (NS5MTase) du WNV porte les activités N7- et 2’O-méthyltransférases (N7- et 2’O-MTases) et il a été proposé que NS5MTase puisse également porter l’activité guanylyltransférase (GTase). J’ai identifié in vitro des résidus clés impliqués dans l’interaction entre NS5MTase et des ARN substrats de chaque activité MTase. Nos résultats démontrent que le site de fixation de la coiffe est nécessaire lors de la 2’O-méthylation et ne l’est pas pour la N7-méthylation. En parallèle, j’ai recherché des résidus catalytiques de la GTase par la méthode de génétique inverse. Des résultats préliminaires indiquent que la mutation K29A induit un défaut de réplication. Ce résidu pourrait donc être impliqué dans l’activité GTase de NS5MTase.Concernant hMPV, j’ai effectué une analyse fonctionnelle du domaine CR-VI+ de la protéine L. J’ai démontré que CR-VI+ possède les activités N7- et 2’O-MTases et j’ai identifié les résidus impliqués dans le recrutement de l’ARNm. L’ordre de méthylation est non canonique avec la 2’O-méthylation qui précède la N7-méthylation. Enfin, j’ai également démontré que CR-VI+ possède une activité d’hydrolyse du GTP.Ce travail démontre que ces MTases possèdent 2 voire 3 des activités enzymatiques nécessaires à la formation de la coiffe, et représentent donc une cible de choix pour le développement d’inhibiteurs. / My PhD project is focus on the study of the enzymatic activities involved in the RNA capping pathway of two RNA viruses: the West Nile Virus (WNV) and the human metapneumovirus (hMPV). These viruses encode for enzymes allowing the addition of a cap-1 structure (m7GpppN2’Om) to their mRNA 5’ ends. The NS5 N-terminal domain (NS5MTase) of WNV harbours the N7- and 2’O-methyltransferase activities (N7- and 2’O-MTase); and it has been proposed that NS5MTase also bears a guanylyltransferase activity (GTase). I have identified residues involved in the NS5MTase interaction sites with their RNAs substrate. My assays demonstrate the importance of the cap-binding site for the 2’O-methylation but not for the N7-methylation. In parallel, I have tried to identify putative catalytic residues of the GTase activity by reverse genetics. Preliminary results suggest that NS5MTase K29 could be a catalytic residue.Concerning hMPV, I performed a functional analysis of CR-VI+ domain of the protein L. I demonstrated that the CR-VI+ domain harbours the N7- and 2’O-MTase activities and identified the residues involved in the mRNA recruitment. I showed that the methylation order is not canonical with the 2’O-methylation preceding the N7-methylation. Finally, I showed that the domain harbours an additional GTP hydrolysis activity, representing the first step of RNA cap formation for Mononegavirales.This work demonstrates that this MTase domains harbour 2 or 3 of the enzymatic activities required for viral RNA cap synthesis and represent attractive targets for the development of antivirals.
5

Exploration of broader substrate specificity, applications, and mechanismof tRNA<sup>His</sup> guanylyltransferase-like proteins (TLPs)

Jayasinghe Arachchige, Malithi Ishara Jayasinghe 30 September 2022 (has links)
No description available.

Page generated in 0.0534 seconds