• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RNA Editing in Trypanosomes: Substrate Recognition and its Integration to RNA Metabolism

Hernandez, Alfredo J. 2010 December 1900 (has links)
RNA editing in trypanosomes is the post-transcriptional insertion or deletion of uridylates at specific sites in mitochondrial mRNAs. This process is catalyzed by a multienzyme, multisubunit complex through a series of enzymatic cycles directed by small, trans-acting RNA molecules. Despite impressive progress in our understanding of the mechanism of RNA editing and the composition of the editing complex, fundamental questions regarding RNP assembly and the regulation of catalysis remain. This dissertation presents studies of RNA-protein interactions between RNA editing complexes and substrate RNAs and the determination of substrate secondary structural determinants that govern them. Our results suggest that substrate association, cleavage and full-round editing by RNA editing complexes in vitro obey hierarchical determinants that increase in complexity as editing progresses and we propose a model for substrate recognition by RNA editing complexes. In addition, this dissertation also presents the characterization of a novel mitochondrial RNA helicase, named REH2 and its macromolecular interactions. Our data suggest that REH2 is intimately involved in interactions with macromolecular complexes that integrate diverse processes mediating mitochondrial gene expression. These results have implications for the mechanism of substrate RNA recognition by RNA editing complexes as well as for the integration of RNA editing to other facets of mitochondrial RNA metabolism.
2

Kinetoplastid RNA editing : analysis of the mechanism of guide RNA directed uridylate insertion into precursor messenger RNA /

Kable, Moffett Lee. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [87]-96).
3

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
4

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.

Page generated in 0.0505 seconds