• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of KMT5C on EGFR inhibitor resistance in non-small cell lung cancer

Alejandra Agredo Montealegre (16924932) 06 September 2023 (has links)
<p dir="ltr">Lung cancer is the leading cause of cancer-related deaths, and although important therapy advancements have been achieved, ~1.6 million people die from lung cancer annually. Non-small cell lung cancer (NSCLC), which makes up ~85% of lung cancer cases, is mainly treated with radiotherapy, chemotherapies, and targeted agents. Targeted agents are selected based on the mutation spectrum of the tumor. In NSCLC the epidermal growth factor receptor (EGFR) is commonly mutated and, leads to increased proliferation and cell survival. The standard-of-care treatment for patients with activating mutations in EGFR is treatment with tyrosine kinase inhibitors (TKI), such as erlotinib. While tumors initially respond to TKIs, after 1-2 years most patients develop resistance. In ~60% of TKI resistant tumors, resistance is the result of a secondary mutation in EGFR, whereas in the remaining 20%, tumors turn on bypass track-signals to overcome inhibition of the EGFR pathway. However, 15-20% of the cases the mechanisms underlying resistance are unknown. Most studies focus on the gain of function of oncogenes as mediators of resistance; however, little is known about the role that tumor suppressors play in TKI resistance. Hence, we performed a genome-wide CRISPR Cas9 knock-out screen to identify genes that when knocked-out would drive erlotinib resistance, and KMT5C was identified as the top candidate. KMT5C is a histone methyltransferase that trimethylates H4K20 (H4K20me3), enabling the establishment of constitutive and facultative heterochromatin. Data from human samples suggests that the <i>KMT5C</i> transcript is globally downregulated in NSCLC and in tumor samples resistant to the third generation TKI osimertinib. Additionally, loss of the modification H4K20me3, influences prognosis of NSCLC, indicating that loss of KMT5C function is a crucial mechanism in carcinogenesis. Here we describe how loss of KMT5C leads to increased transcription of the oncogene MET, due to a loss in H4K20me3-mediated repression of a long non-coding RNA transcription (LINC01510) upstream of MET. This mechanism was found to be partially responsible in driving TKI resistance in EGFR mutant cells. Historically, KMT5C has been associated with generation of constitutive heterochromatin (cHC); however, recent reports, including our own, indicate that KMT5C also regulates transcription in regions outside of cHC. Our preliminary evidence suggests that deposition of H42K0me3 via KMT5C in regions outside of cHC, is less stable than in cHC regions. This novel finding led us to hypothesize that regulation of KMT5C and H42K0me3 at different regions of heterochromatin is a dynamic process.</p>
2

Histone lysine methylation reinforces heterochromatin-mediated gene silencing and proliferation arrest during oncogene-induced senescence

Fernández Díaz, Erlinda 12 1900 (has links)
La sénescence cellulaire et l'apoptose ont évolué comme des puissantes barrières protectrices contre la transformation néoplasique. La sénescence est un état d'arrêt permanent de la prolifération dans lequel les cellules restent métaboliquement actives. La sénescence cellulaire est déclenchée par différentes sources de stress, notamment les oncogènes activés, le dysfonctionnement des télomères, les dommages à l'ADN et des défauts dans la réplication provoqués par des agents génotoxiques, des espèces réactives de l'oxygène, etc. Ce processus complexe engage deux voies différentes de suppresseurs de tumeurs, les voies p53/p21 et p16INK4a/pRb, et les deux voies doivent être compromises dans les cellules humaines afin de contourner la sénescence. Par conséquent, décrire la relation entre l'activation des oncogènes, l'arrêt de la prolifération induite par la sénescence et l'échappement à l'état de sénescence est essentiel pour comprendre le processus de tumorigenèse. KDM4A est un membre de la sous-famille KDM4 des Jumonji lysine déméthylases ciblant les variantes di- et triméthylées de l'histone H3 lysine 9 (H3K9) et l'histone H3 lysine 36 (H3K36). Les trois premiers membres de la sous-famille KDM4A, KDM4B et KDM4C sont également capables de lier l'histone 4 lysine 20 di-méthyl/tri-méthyl (H4K20me2/3) et l'histone 3 lysine 4 tri-méthyl (H3K4me3), via leurs domaines Tudor consécutifs. KDM4A module négativement l'activité de la voie p53, en ciblant directement le suppresseur de tumeur CHD5, et est également un régulateur négatif de la réponse aux dommages de l'ADN. Les niveaux d'expression de KDM4A sont souvent élevés dans les cellules cancéreuses et diminués pendant la sénescence cellulaire. La motivation principale de cette thèse est d'élargir nos connaissances actuelles sur la façon dont la réorganisation de la chromatine influence la stabilité du phénotype de sénescence. Dans la première partie de ce travail, nous abordons la fonction de méthylation de H4K20 et H3K9, dans le contexte des foyers d'hétérochromatine associés à la sénescence (SAHF: senescence-associated heterochromatin foci). Nous démontrons que l'intégration de H4K20me3 dans les SAHF dépend de l'incorporation précédente de H3K9me3 et révélons les méthyltransférases H4K20 impliquées dans ce processus. Nous proposons un mécanisme moléculaire par lequel H4K20me3 et H3K9me3 coopèrent avec p53 dans la répression stable des gènes cibles de E2F au cours de la sénescence induite par l'oncogène Ras. Dans la deuxième partie de la thèse, nous présentons une voie de dégradation lysosomale (c'est-à-dire l'autophagie médiée par des chaperons) en tant que nouveau mécanisme potentiel par lequel les cellules modulent les niveaux de KDM4A pendant la sénescence. Nos résultats suggèrent que la méthylation dans les lysines des histones régule la stabilité de sénescence en réponse à l'oncogène Ras et révèlent le potentiel d'induction de la sénescence par inhibition ciblée de KDM4A dans le traitement du cancer. / Cellular senescence and apoptosis have evolved as potent protective barriers against neoplastic transformation. Senescence is a state of stable arrest of proliferation in which cells remain metabolically active. Cellular senescence is triggered by different sources of stress, including activated oncogenes, telomere dysfunction, DNA damage and replication defects elicited by genotoxic agents, reactive oxygen species, etc. This complex process engages two different tumor suppressor pathways, the p53/p21 and p16INK4a/pRb pathways that need to be compromised in human cells in order to circumvent the senescence-associated growth halt. Hence, describing the relationship between oncogene activation, senescence-induced proliferation arrest and escape from the senescence state remains essential to understand tumorigenesis. KDM4A is a member of the KDM4 sub-family of Jumonji lysine demethylases targeting di- and tri-methylated histone H3 lysine 9 (H3K9) and histone H3 lysine 36 (H3K36). The first three sub-family members KDM4A, KDM4B and KDM4C are also able to bind histone 4 lysine 20 di-methyl/tri-methyl (H4K20me2/3) and histone 3 lysine 4 tri-methyl (H3K4me3), via their tandem Tudor domain. KDM4A negatively modulates the activity of the p53 pathway, by directly targeting the tumor suppressor CHD5, and is also a negative regulator of the DNA damage response. KDM4A expression levels are often elevated in cancer cells and decreased during cellular senescence. The principal motivation for this thesis is to expand our current knowledge on how chromatin reorganization influences the stability of the senescence phenotype. In the first part of this work we address the function of H4K20 and H3K9 methylation, in the context of the senescence-associated heterochromatin foci (SAHF). We demonstrate that integration of H4K20me3 into the SAHF depends on the previous incorporation of H3K9me3 and reveal the H4K20 methyltransferases involved in this process. We propose a molecular mechanism by which H4K20me3 and H3K9me3 cooperate with p53 in the stable repression of E2F target genes during oncogenic Ras-induced senescence. In the second part of the thesis we present a lysosomal-degradation pathway (i.e. chaperone-mediated autophagy) as a novel potential mechanism by which cells modulate KDM4A protein levels during senescence. Our results strongly suggest that histone lysine methylation contributes to the stability of the senescence response to the Ras oncogene and reveal the potential of senescence induction by targeted inhibition of KDM4A in the treatment of cancer.
3

Identification of novel epigenetic mediators of erlotinib resistance in non-small cell lung cancer

Arpita S Pal (8612079) 16 April 2020 (has links)
<p>Lung cancer is the third most prevalent cancer in the world; however it is the leading cause of cancer related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of the lung cancer cases. The current strategies to treat NSCLC patients with frequent causal genetic mutations is through targeted therapeutics. Approximately 10-35% of NSCLC patient tumors have activated mutations in the Epidermal Growth Factor Receptor (EGFR) resulting in uncontrolled cellular proliferation. The standard-of care for such patients is EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs), a class of targeted therapeutics that specifically inhibit EGFR activity. One such EGFR-TKI used in this study is erlotinib. Following erlotinib treatment, tumors rapidly regress at first; however, over 50% of patients develop erlotinib resistance within a year post treatment. Development of resistance remains to be the major challenge in treatment of NSCLC using EGFR-TKIs such as erlotinib. </p> <p>In approximately 60% of cases, acquired erlotinib resistance in patients is attributed to a secondary mutation in EGFR, whereas in about 20% of cases, activation of alternative signaling pathways is the reported mechanism. For the remaining 15-20% of <a>cases</a> the mechanism of resistance remains unknown. Therefore, it can be speculated that the common methods used to identify genetic mutations in tumors post erlotinib treatment, such as histologic analysis and genetic screening may fail to identify alterations in epigenetic mediators of erlotinib resistance, also including microRNAs (miRNAs). MiRNAs are short non-coding RNAs that post-transcriptionally negatively regulate their target transcripts. Hence, in this study two comprehensive screens were simultaneously conducted in erlotinib sensitive cells: 1) a genome-wide knock-out screen, conducted with the hypothesis that loss of function of certain genes drive erlotinib resistance, 2) a miRNA overexpression screen, conducted with the hypothesis that certain miRNAs drive the development of erlotinib resistance when overexpressed. The overreaching goal of the study was to identify novel drivers of erlotinib resistance such as microRNAs or other epigenetic factors in NSCLC.</p><p>The findings of this study led to the identification of a tumor suppressive protein and an epigenetic regulator, SUV420H2 (KMT5C) that has never been reported to be involved in erlotinib resistance. On the other hand, the miRNA overexpression screen identified five miRNAs that contribute to erlotinib resistance that were extensively analyzed using multiple bioinformatic tools. It was predicted that the miRNAs mediate erlotinib resistance via multiple pathways, owing to the ability of each miRNA to target multiple transcripts via partial complementarity. Importantly, a correlation between the two screens was identified clearly supporting the use of two simultaneous screens as a reliable technique to determine highly significant miRNA-target interactions. Overall, the findings from this study suggest that epigenetic factors, such as histone modifiers and miRNAs function as critical mediators of erlotinib resistance, possibly belonging to the 15-20% of NSCLC cases with unidentified mechanisms involved in erlotinib resistance.</p><p></p>

Page generated in 0.0208 seconds