11 |
Adaptivní rozpoznávání ručně psaného textu / Adaptive Handwritten Text RecognitionProcházka, Štěpán January 2021 (has links)
The need to preserve and exchange written information is central to the human society, with handwriting satisfying such need for several past millenia. Unlike optical character recognition of typeset fonts, which has been throughly studied in the last few decades, the task of handwritten text recognition, being considerably harder, lacks such attention. In this work, we study the capabilities of deep convolutional and recurrent neural networks to solve handwritten text extraction. To mitigate the need for large quantity of real ground truth data, we propose a suitable synthetic data generator for model pre-training, and carry out extensive set of experiments to devise a self-training strategy to adapt the model to unnanotated real handwritten letterings. The proposed approach is compared to supervised approaches and state-of-the-art results on both established and novel datasets, achieving satisfactory performance. 1
|
12 |
CFD-Modellierung der Strömungs- und Transportprozesse im Reaktorkern eines modularen Hochtemperaturreaktors während eines LufteinbruchstörfallsBaggemann, Johannes 22 May 2015 (has links)
Der VHTR als Weiterentwicklung des HTR gilt als eines von sechs aussichtsreichen Reaktorkonzepten für Kernkraftwerkte der Generation IV. Im Rahmen dieser Arbeit wird ein CFD-Modell des HTR-Moduls entwickelt und durch die Simulation eines postulierten Lufteinbruchszenarios die Anwendbarkeit unter Beweis gestellt. Zunächst wird eine Bestandsaufnahme bestehender HTR-Rechenprogramme vorgestellt und die Methodik CFD in ihren Grundzügen erläutert. Anhand der Grundgleichungen werden die zur Berechnung des Störfalls zu modellierenden, HTR-spezifischen Parameter diskutiert, die verwendeten empirischen Korrelationen vorgestellt und die umfangreiche Validierung des entwickelten Modellansatzes zusammengefasst. Anschließend wird die Anwendbarkeit des HTR-Modells auf ein konkretes Lufteinbruchszenario eines HTR-Moduls gezeigt. Dabei werden die einzelnen Phasen des Szenarios anhand der Simulationsergebnisse intensiv diskutiert. Abschließend erfolgt eine Diskussion der Modellunsicherheiten und der numerischen Fehler.
|
13 |
Hard to reach energy consumers in Sweden / Svårtillgängliga energikonsumenter i SverigeLundin, Sanna January 2023 (has links)
The transition towards a sustainable and low-carbon future requires significant changes in energy behaviour among energy consumers. However, the question remains about how, by whom, and what changes are necessary to achieve this transition. While many policies have been implemented to overcome these barriers, current policies focus on technology market development and market failures. Policies that address behavioural anomalies are limited, leading to a lack of engagement and awareness among many energy consumers. This issue is particularly prominent among hard-to-reach (HTR) consumer groups, which can be found in both the commercial and residential sectors (Rotmann, Sea, 2019). The impact of HTR energy consumers on energy efficiency measures and the achievement of climate neutrality remains largely unexplored. It is necessary to identify and understand these groups to address this gap. By doing so, it is possible to help them change their energy consumption behaviour towards a more sustainable and low-carbon future (Rotmann, Sea, 2019).This project aims to provide insights into HTR energy consumers in Sweden and assess their impact on achieving climate neutrality. The primary objective is to identify the most common HTR groups, their main barriers, and the potential drivers that could help change their energy consumption behaviour. A detailed literature review is conducted to gather information on practical and theoretical cases globally to achieve these objectives. After the literature review, a semi-quantitative data analysis has identified and classified HTR energy user in Sweden, by using modelling software like Mental Modeler. A qualitative analysis was carried out to analyze the HTR groups, identify their main barriers and potential drivers, and to understand their energy behaviour better. From the literature review, it was found that high income, low income, and elderly are hard to reach, and there is a research gap of their behavior, needs and how to address their challenges to energy consumption. The findings revealed that high energy prices, subsidies, economic conditions, and energy production were key driver components that could not be controlled by individual energy consumers. Therefore, policymakers must implement policies that address these root causes, such as investing in renewable energy sources, increasing competition in the energy market, and offering targeted subsidies for energy-efficient products and services. Additionally, policies that promote economic growth and stability can help to improve energy efficiency by reducing the financial strain on households. Overall, this study highlights the need for comprehensive energy efficiency policies that target both the demand and supply side of energy consumption to promote sustainable and affordable energy use in households, which is crucial for achieving long-term energy and climate goals. / Övergången till en hållbar framtid med låga koldioxidutsläpp kräver betydande förändringar i energibeteendet bland energikonsumenter. Frågan kvarstår dock om hur, av vem och vilka förändringar som krävs för att uppnå denna övergång. Även om ett stort antal policyer har implementerats för att övervinna dessa barriärer, fokuserar nuvarande policyer främst på teknikmarknadsutveckling och marknadsmisslyckanden. Policyer som tar itu med beteendeavvikelser är begränsade, vilket leder till bristande engagemang och medvetenhet bland många energikonsumenter. Denna fråga är särskilt framträdande bland svåråtkomliga konsumentgrupper, som finns i både kommersiella och bostadssektorer (Rotmann, Sea, 2019). De svåråtkomliga energikonsumenters inverkan på energieffektivitetsåtgärder och uppnåendet av klimatneutralitet är fortfarande i stort sett outforskad. För att komma till rätta med denna klyfta är det nödvändigt att identifiera och förstå dessa grupper bättre. Genom att göra det kommer det att vara möjligt att hjälpa dem att ändra sitt energikonsumtionsbeteende mot en mer hållbar framtid med låga koldioxidutsläpp (Rotmann, Sea, 2019). Detta projekt syftar till att ge insikter om HTR energikonsumenter i Sverige och bedöma deras inverkan på att uppnå klimatneutralitet. Det primära målet är att identifiera de vanligaste HTR-grupperna, de huvudsakliga hindren de möter och de potentiella drivkrafterna som kan bidra till att förändra deras energiförbrukningsbeteende.En noggrann litteraturöversikt genomförs för att samla information om praktiska och teoretiska fall globalt för att uppnå dessa mål. Efter litteraturöversikten har en semi-kvantitativ dataanalys identifierat och klassificerat HTR-energianvändare i Sverige genom att använda modelleringsprogramvara som Mental Modeler. En kvalitativ analys utfördes för att analysera HTR-grupperna, identifiera deras huvudsakliga hinder och potentiella drivkrafter och för att bättre förstå deras energibeteende. Från litteraturgenomgången framgick det att höginkomsttagare, låginkomsttagare och äldre är svåra att nå, och att det finns en forskningslucka vad gäller deras beteende, behov och hur man kan hantera deras utmaningar i energikonsumtionen. Resultaten visade att höga energipriser, subventioner, ekonomiska förhållanden och energiproduktion var viktiga drivkomponenter som inte kunde kontrolleras av enskilda energikonsumenter. Därför måste beslutsfattare genomföra politiska åtgärder som adresserar dessa grundorsaker, såsom investeringar i förnybara energikällor, ökad konkurrens på energimarknaden och erbjudande om riktade subventioner för energieffektiva produkter och tjänster. Dessutom kan politiska åtgärder som främjar ekonomisk tillväxt och stabilitet hjälpa till att förbättra energieffektiviteten genom att minska den ekonomiska belastningen på hushållen. Sammanfattningsvis betonar denna studiebehovet av omfattande energieffektivitetspolitik som riktar sig mot både efterfråge- och tillförselssidan av energiförbrukningen för att främja hållbar och ekonomiskt överkomlig energianvändning i hushållen, vilket är avgörande för att uppnå långsiktiga energi- och klimatmål.
|
14 |
Développement de stratégies de gestion du combustible HTRGuittonneau, Fabrice 28 October 2009 (has links) (PDF)
Dans un souci de réduction du volume de déchets nucléaires et de revalorisation des matières combustibles, une stratégie de gestion du combustible des réacteurs à haute température (HTR) est développée dans cette étude. La réduction de volume passe par la séparation des particules TRISO hautement radioactives et du graphite faiblement radioactif (les deux étant réunis dans un assemblage de combustible appelé "compact") tandis que le recyclage total nécessite la séparation du coeur de la particule, valorisable, et de sa gangue, déchet ultime. Les méthodes de séparation doivent préserver l'intégrité des TRISO afin d'empêcher la fuite des radioéléments. Ainsi, le traitement de choc thermique entre l'azote liquide et l'eau chaude permet une division partielle des compacts mais ne permet de récupérer que peu de particules. L'érosion du graphite par jet d'eau à haute pression présente le risque de fracturer les particules. La combustion totale du carbone libère toutes les billes. Le traitement des compacts par les ultrasons dans l'eau érode le graphite en fonction de l'intensité de travail, des direction et distance d'attaque, de la température et du gaz de saturation, nettoyant les particules. L'attaque acide des compacts par un mélange H2O2 + H2SO4 provoque l'intercalation du graphite par l'acide, faisant gonfler la structure et libérant ainsi les billes intactes. Les TRISO d'une part et leurs gangues d'autre part ont ensuite été vitrifiées par frittage de manière à obtenir une forte densité, jusqu'à un taux de 25% vol. Enfin, la lixiviation des composites dans l'eau ultrapure à 90°C montre de fortes propriétés de confinement.
|
15 |
Hydrogen production using high temperature nuclear reactors : A feasibility studySivertsson, Viktor January 2010 (has links)
<p>The use of hydrogen is predicted to increase substantially in the future, both as chemical feedstock and also as energy carrier for transportation. The annual world production of hydrogen amounts to some 50 million tonnes and the majority is produced using fossil fuels like natural gas, coal and naphtha. High temperature nuclear reactors (HTRs) represent a novel way to produce hydrogen at large scale with high efficiency and less carbon footprint. The aim of this master thesis has been to evaluate the feasibility of HTRs for hydrogen production by analyzing both the reactor concept and its potential to be used in certain hydrogen niche markets. The work covers the production, storage, distribution and use of hydrogen as a fuel for vehicles and aviation and as chemical feedstock for the oil refining and ammonia production industry.</p><p>The study indicates that HTRs may be suitable for hydrogen production under certain conditions. However, the use of hydrogen as an energy carrier necessitates a widespread hydrogen infrastructure (e.g. pipe-lines, refuelling stations and large scale storage), which is associated with major energy losses. Both mentioned industries could benefit from nuclear-based hydrogen with less infrastructural changes, but the potential market is by far smaller than if hydrogen is used as an energy carrier. A maximum of about 60 HTRs of 600 MWth worldwide has been estimated for the ammonia production industry. The Swedish refineries are likely too small to utilize the HTR but in the larger refineries HTR might be applicable.</p>
|
16 |
Hydrogen production using high temperature nuclear reactors : A feasibility studySivertsson, Viktor January 2010 (has links)
The use of hydrogen is predicted to increase substantially in the future, both as chemical feedstock and also as energy carrier for transportation. The annual world production of hydrogen amounts to some 50 million tonnes and the majority is produced using fossil fuels like natural gas, coal and naphtha. High temperature nuclear reactors (HTRs) represent a novel way to produce hydrogen at large scale with high efficiency and less carbon footprint. The aim of this master thesis has been to evaluate the feasibility of HTRs for hydrogen production by analyzing both the reactor concept and its potential to be used in certain hydrogen niche markets. The work covers the production, storage, distribution and use of hydrogen as a fuel for vehicles and aviation and as chemical feedstock for the oil refining and ammonia production industry. The study indicates that HTRs may be suitable for hydrogen production under certain conditions. However, the use of hydrogen as an energy carrier necessitates a widespread hydrogen infrastructure (e.g. pipe-lines, refuelling stations and large scale storage), which is associated with major energy losses. Both mentioned industries could benefit from nuclear-based hydrogen with less infrastructural changes, but the potential market is by far smaller than if hydrogen is used as an energy carrier. A maximum of about 60 HTRs of 600 MWth worldwide has been estimated for the ammonia production industry. The Swedish refineries are likely too small to utilize the HTR but in the larger refineries HTR might be applicable.
|
17 |
The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven ChiutaChiuta, Steven January 2010 (has links)
The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed
to global warming due to the huge CO2 emissions of the process. This corresponds to
inefficient carbon conversion, a problem growing in importance particularly given the limited
lifespan of coal reserves. These simultaneous challenges of environmental sustainability and
energy security associated with CTL facilities have been defined in earlier studies. To reduce
the environmental impact and improve the carbon conversion of existing CTL facilities, this
paper proposes the concept of a nuclear–assisted CTL plant where a hybrid sulphur (HyS)
plant powered by 10 modules of the high temperature nuclear reactor (HTR) splits water to
produce hydrogen (nuclear hydrogen) and oxygen, which are in turn utilised in the CTL
plant. A synthesis gas (syngas) plant mass–analysis model described in this paper
demonstrates that the water–gas shift (WGS) and combustion reactions occurring in
hypothetical gasifiers contribute 67% and 33% to the CO2 emissions, respectively. The
nuclear–assisted CTL plant concept that we have developed is entirely based on the
elimination of the WGS reaction, and the consequent benefits are investigated. In this kind of
plant, the nuclear hydrogen is mixed with the outlet stream of the Rectisol unit and the
oxygen forms part of the feed to the gasifier. The significant potential benefits include a 75%
reduction in CO2 emissions, a 40% reduction in the coal requirement for the gasification
plant and a 50% reduction in installed syngas plant costs, all to achieve the same syngas
output. In addition, we have developed a financial model for use as a strategic decision
analysis (SDA) tool that compares the relative syngas manufacturing costs for conventional
and nuclear–assisted syngas plants. Our model predicts that syngas manufactured in the
nuclear–assisted CTL plant would cost 21% more than that produced in the conventional
CTL plant when the average cost of producing nuclear hydrogen is US$3/kg H2. The model
also evaluates the cost of CO2 avoided as $58/t CO2. Sensitivity analyses performed on the
costing model reveal, however, that the cost of CO2 avoided is zero at a hydrogen
production cost of US$2/kg H2 or at a delivered coal cost of US$128/t coal. The economic
advantages of the nuclear–assisted plant are lost above the threshold cost of $100/t CO2.
However, the cost of CO2 avoided in our model works out to below this threshold for the
range of critical assumptions considered in the sensitivity analyses. Consequently, this paper
demonstrates the practicality, feasibility and economic attractiveness of the nuclear–assisted
CTL plant. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
|
18 |
The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven ChiutaChiuta, Steven January 2010 (has links)
The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed
to global warming due to the huge CO2 emissions of the process. This corresponds to
inefficient carbon conversion, a problem growing in importance particularly given the limited
lifespan of coal reserves. These simultaneous challenges of environmental sustainability and
energy security associated with CTL facilities have been defined in earlier studies. To reduce
the environmental impact and improve the carbon conversion of existing CTL facilities, this
paper proposes the concept of a nuclear–assisted CTL plant where a hybrid sulphur (HyS)
plant powered by 10 modules of the high temperature nuclear reactor (HTR) splits water to
produce hydrogen (nuclear hydrogen) and oxygen, which are in turn utilised in the CTL
plant. A synthesis gas (syngas) plant mass–analysis model described in this paper
demonstrates that the water–gas shift (WGS) and combustion reactions occurring in
hypothetical gasifiers contribute 67% and 33% to the CO2 emissions, respectively. The
nuclear–assisted CTL plant concept that we have developed is entirely based on the
elimination of the WGS reaction, and the consequent benefits are investigated. In this kind of
plant, the nuclear hydrogen is mixed with the outlet stream of the Rectisol unit and the
oxygen forms part of the feed to the gasifier. The significant potential benefits include a 75%
reduction in CO2 emissions, a 40% reduction in the coal requirement for the gasification
plant and a 50% reduction in installed syngas plant costs, all to achieve the same syngas
output. In addition, we have developed a financial model for use as a strategic decision
analysis (SDA) tool that compares the relative syngas manufacturing costs for conventional
and nuclear–assisted syngas plants. Our model predicts that syngas manufactured in the
nuclear–assisted CTL plant would cost 21% more than that produced in the conventional
CTL plant when the average cost of producing nuclear hydrogen is US$3/kg H2. The model
also evaluates the cost of CO2 avoided as $58/t CO2. Sensitivity analyses performed on the
costing model reveal, however, that the cost of CO2 avoided is zero at a hydrogen
production cost of US$2/kg H2 or at a delivered coal cost of US$128/t coal. The economic
advantages of the nuclear–assisted plant are lost above the threshold cost of $100/t CO2.
However, the cost of CO2 avoided in our model works out to below this threshold for the
range of critical assumptions considered in the sensitivity analyses. Consequently, this paper
demonstrates the practicality, feasibility and economic attractiveness of the nuclear–assisted
CTL plant. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
|
19 |
Desempenho de Reator Aeróbio de Leito Fluidizado com terceira câmara para Remoção de Nitrogênio / Performance of a Biofilm Airlift Suspension Reactor with Third chamber for Nitrogen RemovalChaucanes, Paula Andrea Montenegro 20 October 2017 (has links)
Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-22T12:08:17Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-22T14:06:59Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-22T18:09:14Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-22T18:12:24Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-22T19:44:22Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T11:57:15Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T12:57:56Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T13:16:32Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T13:34:45Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T17:24:54Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-23T17:29:02Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-24T12:05:25Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-24T12:39:44Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-24T16:47:39Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-24T17:31:21Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-27T11:40:49Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-27T12:31:50Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-27T13:03:16Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-27T18:08:08Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-28T12:13:07Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-28T14:22:46Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-28T14:31:58Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-28T14:37:46Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-28T19:04:28Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-11-30T18:58:22Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-12-04T14:43:24Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Submitted by PAULA ANDREA MONTENEGRO CHAUCANES null (paula_andrea_mon@hotmail.com) on 2017-12-05T14:11:15Z
No. of bitstreams: 1
Dissertação Paula (final1).pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Approved for entry into archive by Roberta Honorato Goria null (robertacgb@reitoria.unesp.br) on 2017-12-06T13:16:07Z (GMT) No. of bitstreams: 1
chaucanes_pam_me_ilha.pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5) / Made available in DSpace on 2017-12-06T13:16:07Z (GMT). No. of bitstreams: 1
chaucanes_pam_me_ilha.pdf: 4074329 bytes, checksum: b4e87799b76f0a2635d5a1511a22d2f0 (MD5)
Previous issue date: 2017-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este estudo mostra o funcionamento dos processos de oxidação de matéria orgânica junto com os processos simultâneos de nitrificação e desnitrificação (SND) dentro do reator aeróbio de leito fluidizado de tubos concêntricos com uma terceira câmara para gerar condições anóxicas (necessárias para garantir o processo de desnitrificação). O reator foi operado por um período de 140 dias, durante o qual a remoção de demanda química de oxigênio (DQO) e de nitrogênio total (NT), atingiu 80% e 44% respectivamente, para um tempo de detenção hidráulica (TDH) de 3 horas. A configuração dos diâmetros dos tubos concêntricos resultou em diferentes relações de áreas e, portanto em diferentes vazões para cada câmara. Na operação do reator foram aplicadas duas relações de vazões alterando o nível de esgoto dentro do reator. Os efeitos destas relações de vazões, alterou a concentração de oxigênio dissolvido (OD) entre os compartimentos aeróbio e anóxico do reator e a relação C:N, as quais foram estudadas durante o funcionamento deste sistema. Os resultados indicaram que a relação de vazões 2(4,8: 3,8: 1 para as câmaras 1, 2 e 3, respectivamente) beneficiou as remoções de DQO e NT. A concentração de OD no compartimento aeróbio apresentou valores médios de 3,57 ± 1,24 mg.L -1 , e no topo da câmara 3, a concentração de OD foi de 1,41 ± 0,78 mg.L -1 . As relações C:N que apresentaram maiores eficiências de remoção de NT foram as superiores a 10, sendo a máxima remoção de T na relação C:N de 17. O tempo de retenção celular (TRC) alcançado no reator foi de 3,16 ± 3,07 dias. Neste trabalho de pesquisa foi concluído que a configuração de três câmaras concêntricas para o reator aeróbio de leito fluidizado beneficia a remoção de NT, tornando este reator uma alternativa para o tratamento de águas residuárias domésticas. / This study shows the operation of the organic matter oxidation processes together with the simultaneous processes of nitrification and denitrification (SND) inside the aerobic fluidized bed reactor of concentric tubes with a third chamber to generate anoxic conditions (necessary to guarantee the denitrification process). The reactor operated over a period of 140 days, during which chemical oxygen demand (COD) and total nitrogen (TN) removal reached 80% and 44% respectively, for a 3 hour hydraulic detention time (HDT). The configuration of the diameters of the concentric tubes resulted in different area ratios and therefore in different flow rates for each chamber. In the reactor operation were applied two flow ratios, altering the sewage level inside the reactor. The effects of these flow rates were changing the concentration of dissolved oxygen (DO) between the aerobic and anoxic compartments of the reactor and the C: N ratio, which was studied during the operation of this system. The results indicated that the ratio of flows 2 (4.8: 3.8: 1 for chambers 1, 2 e 3, respectively) benefited the COD and TN removal. The DO concentration in the aerobic compartment presented average values of 3.57 ± 1.24 mg.L-1 , and on top of chamber 3, the DO concentration was 1.41 ± 0.78 mg.L-1 . The C:N ratios that showed higher nitrogen removal efficiencies were higher than 10, with the maximum TN removal at the C:N ratio of 17. The cell retention time reached (CRT) in the reactor was 3.16 ± 3.07 days. In this research, was concluded that three concentric chambers configuration for the aerobic fluidized bed reactor benefits the TN removal, became this reactor an alternative in domestic wastewater treatment.
|
20 |
Desempenho de Reator Aeróbio de Leito Fluidizado com terceira câmara para Remoção de Nitrogênio /Chaucanes, Paula Andrea Montenegro January 2017 (has links)
Orientador: Tsunao Matsumoto / Resumo: Este estudo mostra o funcionamento dos processos de oxidação de matéria orgânica junto com os processos simultâneos de nitrificação e desnitrificação (SND) dentro do reator aeróbio de leito fluidizado de tubos concêntricos com uma terceira câmara para gerar condições anóxicas (necessárias para garantir o processo de desnitrificação). O reator foi operado por um período de 140 dias, durante o qual a remoção de demanda química de oxigênio (DQO) e de nitrogênio total (NT), atingiu 80% e 44% respectivamente, para um tempo de detenção hidráulica (TDH) de 3 horas. A configuração dos diâmetros dos tubos concêntricos resultou em diferentes relações de áreas e, portanto em diferentes vazões para cada câmara. Na operação do reator foram aplicadas duas relações de vazões alterando o nível de esgoto dentro do reator. Os efeitos destas relações de vazões, alterou a concentração de oxigênio dissolvido (OD) entre os compartimentos aeróbio e anóxico do reator e a relação C:N, as quais foram estudadas durante o funcionamento deste sistema. Os resultados indicaram que a relação de vazões 2(4,8: 3,8: 1 para as câmaras 1, 2 e 3, respectivamente) beneficiou as remoções de DQO e NT. A concentração de OD no compartimento aeróbio apresentou valores médios de 3,57 ± 1,24 mg.L -1 , e no topo da câmara 3, a concentração de OD foi de 1,41 ± 0,78 mg.L -1 . As relações C:N que apresentaram maiores eficiências de remoção de NT foram as superiores a 10, sendo a máxima remoção de T na relação C:N de 17. O te... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This study shows the operation of the organic matter oxidation processes together with the simultaneous processes of nitrification and denitrification (SND) inside the aerobic fluidized bed reactor of concentric tubes with a third chamber to generate anoxic conditions (necessary to guarantee the denitrification process). The reactor operated over a period of 140 days, during which chemical oxygen demand (COD) and total nitrogen (TN) removal reached 80% and 44% respectively, for a 3 hour hydraulic detention time (HDT). The configuration of the diameters of the concentric tubes resulted in different area ratios and therefore in different flow rates for each chamber. In the reactor operation were applied two flow ratios, altering the sewage level inside the reactor. The effects of these flow rates were changing the concentration of dissolved oxygen (DO) between the aerobic and anoxic compartments of the reactor and the C: N ratio, which was studied during the operation of this system. The results indicated that the ratio of flows 2 (4.8: 3.8: 1 for chambers 1, 2 e 3, respectively) benefited the COD and TN removal. The DO concentration in the aerobic compartment presented average values of 3.57 ± 1.24 mg.L-1 , and on top of chamber 3, the DO concentration was 1.41 ± 0.78 mg.L-1 . The C:N ratios that showed higher nitrogen removal efficiencies were higher than 10, with the maximum TN removal at the C:N ratio of 17. The cell retention time reached (CRT) in the reactor was 3.16 ± 3.... (Complete abstract click electronic access below) / Mestre
|
Page generated in 0.0241 seconds