• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • Tagged with
  • 17
  • 17
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Measuring the Neutron Spin Asymmetry A1n in the Valence Quark Region in Hall C at Jefferson Lab

Cardona, Melanie Leigh, 0000-0001-5337-9550 January 2023 (has links)
The quest to understand how the nucleon spin is decomposed into its constituent quark and gluon spin and orbital angular momentum (OAM) components has been at the forefront of nuclear physics for decades. Due to the non-perturbative nature of Quantum Chromodynamics (QCD) - the theory describing how quarks and gluons bind together to form protons and neutrons - making absolute predictions of nucleon spin structure is generally difficult, especially as a function of its quark and gluon longitudinal momentum fraction x. Measurements involving nucleon spin structure serve as a sensitive test for QCD, including ab-initio lattice QCD calculations due to the advent of the quasi-PDF formalism, and various predictions that diverge at large-x. The neutron spin asymmetry A1n at high-x is a key observable for probing nucleon spin structure. In the valence domain (x > 0.5), sea effects are expected to be negligible, and so the total nucleon spin is considered to be carried by the valence quarks. The valence region can therefore enable us to study the role of quark OAM and other non-perturbative effects of the strong force. A1^n was measured in the deep inelastic scattering region of 0.40 < x < 0.75 and 6 < Q^2 < 10 GeV^2 in Hall C at Jefferson Lab using a 10.4 GeV longitudinally polarized electron beam, upgraded polarized He-3 target, and the High Momentum Spectrometer (HMS) and Super High Momentum Spectrometer (SHMS). E12-06-110 provides the first precision data in the valence quark region above x = 0.60, and its preliminary results proved consistent with earlier data disqualifying a pQCD model that excluded quark OAM. Combined with previous world proton data, the ratio of the polarized-to-unpolarized up quark momentum distribution (∆u + ∆anti-u)/(u + anti-u) remained positive at large-x, and the down quark (∆d + ∆anti-d)/(d + anti-d) remained negative. / Physics
12

O vértice D*Dp usando as regras de soma da QCD / The D*Dp vertex using the QCD sum rules

Bruno Osório Rodrigues 03 March 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A física de partículas vem atualmente estudando tópicos como o plasma de quarks e glúons (QGP), o bóson de Higgs e a matéria escura, que requerem experimentos de colisões entre partículas cada vez mais energéticas. Para isso, são necessários aceleradores capazes de gerar partículas projéteis a cada vez mais altas energias, o que pode levar a uma nova física. Quando novos dados surgem nos laboratórios, novos processos são necessários para explicar estes dados e algumas vezes a estrutura interna das partículas envolvidas é desconhecida. Nos modelos teóricos, usados para descrever estes processos de espalhamento, é comum introduzir o fator de forma. O fator de forma é simplesmente uma maneira de simular a sub-estrutura das partículas envolvidas nestes processos com função da energia ou momento. A obtenção dos atores de forma pode ser feita usando o método conhecido como Regras de Soma da QCD (RSQCD). Neste trabalho, será estudado o vértice D*Dp usando as RSQCD, de modo que seja possível obter os seus fatores de forma e sua constante de acoplamento. Para isso, foram estudados os casos em que o méson &#961; e o méson D estão fora de suas camadas de massa. O vértice D*Dp é muito importante para entender melhor o &#961;&#960; Puzzle, onde o méson &#1032;/&#968; decai &#961;&#960; em com um branching ratio maior do que o esperado (este é um processo suprimido pela regra de OZI). Estudando este processo com graus de liberdade mesnicos, é possível escapar da regra de OZI, uma vez que o processo &#1032;/&#968;&#8594; DD &#8594; &#961;&#960; não é suprimido por OZI. Ao se fazer isso, aparecerá, entre outros, o vértice D*Dp . Este é um vértice que também aparece em outros decaimentos, como por exemplo X(3872) &#8594;&#1032;/&#968;p e B&#8594;&#1032;/&#968;D. Ao final do desenvolvimento, os resultados obtidos neste trabalho para o vértice D*Dp foram comparados com outros encontrados na literatura, se mostrando compatíveis com estes outros trabalhos. / The particle physics have been studying topics like the Quark-Gluon Plasma (QGP), Higgs boson and dark matter, which require experiments in heavy-ion collisions. Therefore, accelerators capable of generate high energy particle beams are necessary and may generate new physics. When new data arise in the laboratories, new processes are necessary to explain this data and sometimes, the internal structure of the involved particles is unknow or are virtual. In the theoretical models, used to describe this scattering processes, is common to introduce the form factors. The form factor is a way to simulate the sub-structure of the involved particles as function of energy or momentum. The form factor can be obtained using a method called QCD Sum Rules (QCDSR). In this work, the vertex D*Dp will be studied using the QCDSR, in order to obtain its form factors and coupling constant.The D*Dp vertex is very important to understand the &#961;&#960; Puzzle, where the &#1032;/&#968; meson decays in &#961;&#960; with a branching ratio bigger than expected (this is a suppressed process by the OZI Rule). Studying this process with hadronic degrees of freedom, its possible to escape of the OZI rule, once the &#1032;/&#968;&#8594; DD &#8594; &#961;&#960; is not suppressed by the OZI rule. In this process, the D*Dp vertex is necessary. There are other processes where this vertex is necessary: X(3872)&#8594;&#1032;/&#968;p and B&#8594;&#1032;/&#968;D for example. In this work, was only possible to obtain results from the &#961; off-shell diagram. This results were compared with others obtained in the literature.
13

O vértice D*Dp usando as regras de soma da QCD / The D*Dp vertex using the QCD sum rules

Bruno Osório Rodrigues 03 March 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A física de partículas vem atualmente estudando tópicos como o plasma de quarks e glúons (QGP), o bóson de Higgs e a matéria escura, que requerem experimentos de colisões entre partículas cada vez mais energéticas. Para isso, são necessários aceleradores capazes de gerar partículas projéteis a cada vez mais altas energias, o que pode levar a uma nova física. Quando novos dados surgem nos laboratórios, novos processos são necessários para explicar estes dados e algumas vezes a estrutura interna das partículas envolvidas é desconhecida. Nos modelos teóricos, usados para descrever estes processos de espalhamento, é comum introduzir o fator de forma. O fator de forma é simplesmente uma maneira de simular a sub-estrutura das partículas envolvidas nestes processos com função da energia ou momento. A obtenção dos atores de forma pode ser feita usando o método conhecido como Regras de Soma da QCD (RSQCD). Neste trabalho, será estudado o vértice D*Dp usando as RSQCD, de modo que seja possível obter os seus fatores de forma e sua constante de acoplamento. Para isso, foram estudados os casos em que o méson &#961; e o méson D estão fora de suas camadas de massa. O vértice D*Dp é muito importante para entender melhor o &#961;&#960; Puzzle, onde o méson &#1032;/&#968; decai &#961;&#960; em com um branching ratio maior do que o esperado (este é um processo suprimido pela regra de OZI). Estudando este processo com graus de liberdade mesnicos, é possível escapar da regra de OZI, uma vez que o processo &#1032;/&#968;&#8594; DD &#8594; &#961;&#960; não é suprimido por OZI. Ao se fazer isso, aparecerá, entre outros, o vértice D*Dp . Este é um vértice que também aparece em outros decaimentos, como por exemplo X(3872) &#8594;&#1032;/&#968;p e B&#8594;&#1032;/&#968;D. Ao final do desenvolvimento, os resultados obtidos neste trabalho para o vértice D*Dp foram comparados com outros encontrados na literatura, se mostrando compatíveis com estes outros trabalhos. / The particle physics have been studying topics like the Quark-Gluon Plasma (QGP), Higgs boson and dark matter, which require experiments in heavy-ion collisions. Therefore, accelerators capable of generate high energy particle beams are necessary and may generate new physics. When new data arise in the laboratories, new processes are necessary to explain this data and sometimes, the internal structure of the involved particles is unknow or are virtual. In the theoretical models, used to describe this scattering processes, is common to introduce the form factors. The form factor is a way to simulate the sub-structure of the involved particles as function of energy or momentum. The form factor can be obtained using a method called QCD Sum Rules (QCDSR). In this work, the vertex D*Dp will be studied using the QCDSR, in order to obtain its form factors and coupling constant.The D*Dp vertex is very important to understand the &#961;&#960; Puzzle, where the &#1032;/&#968; meson decays in &#961;&#960; with a branching ratio bigger than expected (this is a suppressed process by the OZI Rule). Studying this process with hadronic degrees of freedom, its possible to escape of the OZI rule, once the &#1032;/&#968;&#8594; DD &#8594; &#961;&#960; is not suppressed by the OZI rule. In this process, the D*Dp vertex is necessary. There are other processes where this vertex is necessary: X(3872)&#8594;&#1032;/&#968;p and B&#8594;&#1032;/&#968;D for example. In this work, was only possible to obtain results from the &#961; off-shell diagram. This results were compared with others obtained in the literature.
14

Etats exotiques du Charmonium / Charmonium Exotic States

Albuquerque, Raphael Moreira de 18 February 2013 (has links)
Cette thèse a utilisé la méthode des règles de somme de QCD pour étudier la nature des résonances du charmonium suivantes: Y(3930), Y(4140), X(4350), Y(4260), Y(4360) et Y(4660). Il y a des fortes indications que ces états ont des structures hadroniques non conventionnelles (ou exotiques) lorsque leurs masses respectives et les modes de désintégration observés expérimentalement sont incompatibles avec ce qui est attendu pour l'état conventionnel du charmonium.Le même phénomène se produit dans le secteur du bottomonium, où les nouveaux états Yb(10890) et Yb(11020), observeés récemment pourraient indiquer l'existence de nouveaux états exotiques du bottomonium. De cette façon, on vérifie que l'état Y(4140) peut être décrit soit par une structure moléculaire D*s D*s (0++) ou par une mélange entre les états moléculaires D*s D*s (0++) et D*D* (0++). Les états Y(3930) et X(4350) ne peuvent pas être décrites par les courants moléculaires D*D* (0++) et D*s D*so (1-+), respectivement. On vérifie également que la structure moléculaire psi' f0(980) (1--) réproduit très bien la masse de l'état Y(4660). Une extension naturelle au secteur du bottomonium indique que l'état moléculaire Y' f0(980) est un bon candidat pour l'état Yb(10890). On a également fait une estimation pour les états moléculaires possibles formées par des mésons D et B, ce qui pourra être observé dans des expériences futures au LHC.Une vaste étude, en utilisant le formalisme habituel des règles de somme et aussi le Double Rapport des règles de somme, est fait pour calculer les masses des baryons lourds en QCD. Les estimations pour les masses des baryons avec un (Qqq) et deux (QQq) quarks lourds sont un excellent test pour la capacité de la méthode de règles de somme à prédire les masses des baryons qui n'ont pas encore été observés. / The QCD sum rules approach was used to study the nature of the following charmonium resonances: Y(3930), Y(4140), X(4350), Y(4260), Y(4360) and Y(4660). There is strong evidence that these states have a non-conventional (or exotic) hadronic structures since their respective masses and decay channels observed experimentally are inconsistent with expected for a conventional charmonium state. The same phenomenon occurs on the bottomonium sector, where new states like Yb(10890) and Yb(11020) observed recently could indicate the existence of new bottomonium exotic states. In this way, one verifies that the state Y(4140) could be described as a D*s D*s (0++) molecular state or even as a mixture of D*s D*s (0++) and D*D* (0++) molecular states. For the Y(3930) and X(4350) states, both cannot be described as a D*D* (0++) and D*s D*s0 (1−+), respectively. From the sum rule point of view, the Y(4660) state could be described as a ψ' f0(980) (1−−) molecular state. The extension to the bottomonium sector is done in a straightforward way to demonstrate that the Y' f0(980) molecular state is a good candidate for describing the structure of the Yb(10890) state. In the following, one estimates the mass of the exotic Bc-like molecular states using QCD sum rules - these exotic states would correspond to a bound states of D(*) and B(*) mesons. All of these mass predictions could (or not) be checked in a near future experiments at LHC.A large study using the Double Ratio of sum rules approach has been evaluated for the study of the heavy baryon masses in QCD. The obtained results for the baryons with one (Qqq) and two (QQq) heavy quarks will be an excellent test for the capability of the sum rule approach in predicting mass of the baryons which have not yet been observed.
15

Etude des J/psi dans le canal dimuon du spectromètre de l’expérience ALICE auprès du LHC dans les collisions proton+proton à sqrt(s) = 7 TeV / Study of J/psi in the dimuon channel with the ALICE muon spectrometer at the LHC for proton+proton collisions at sqrt(s) = 7 TeV

Boyer, Bruno 21 October 2011 (has links)
La densité epsilon0 de la matière nucléaire ordinaire est de l'ordre de 0,17 GeV/fm^3 . Lorsqu’ elle atteint une densité comprise entre 5 à 10 epsilon0 ou une température comprise entre 150 à 200 MeV, une transition de phase, prédite par la ChromoDynamique Quantique sur réseau, vers un nouvel état de la matière se produit. Cet état dans lequel les quarks et les gluons sont déconfinés et peuvent se mouvoir librement est appelé Plasma de Quarks et de Gluons (PQG). Les collisions d’ions lourds ultra-relativistes au Large Hadron Collider (LHC) permettront de recréer les conditions de formation d’un tel état. L’étude du PQG au LHC se fera essentiellement avec l’expérience ALICE (A Large Ion Collider Experiment) dont le spectromètre à muons est conçu pour observer dans le canal muonique, sur un domaine de pseudo-rapidité -4 < eta < -2.5, la suppression des résonances lourdes (J/psi,Upsilon) par écrantage de couleur à travers leurs décroissance en muons.La première partie de ce travail porte sur les corrections d’acceptance et d’efficacité qui sont indispensables pour les analyses de physique. Cette étude a montré que le processus de correction est indépendant des distributions choisies.La seconde partie de cette thèse porte sur l’analyse du J/psi dans les collisions proton+proton à sqrt(s) = 7 TeV. / The ordinary nuclear matte density epsilon0 is around de 0,17 GeV/fm^3 . For a critical value between 5 and 10 epsilon0 or a temperature around 150 to 200 MeV, the lattice Quantum ChromoDynamics (lQCD) predicts a phase transition from the classical matter to a new state of matter called the Quark Gluon Plasma (QGP). In this state, quarks and gluons behave like free particles. Heavy ions collisions at the Large Hadron Collider (LHC) are used to recreate the condition needed for a QGP formation. ALICE (A Large Ion Collider Experiment) is one of the LHC experiment dedicated to the study the QGP. One of the possible signature is the suppression of the quarkonia (J/psi, Upsilon) by color screening. The ALICE muon spectrometer allows to measure the quarkonia, in a pseudo-rapidity domain -4 < eta < -2.5, using their decay into muons.The first part of the report presents the acceptance and efficiency corrections. These corrections are crucial for the analysis. This study has shown that the correction process is independent from the selected distribution used for the correction.The second part describes the analysis of the J/psi in proton+proton collisions at sqrt(s) = 7 TeV.
16

Structure interne du nucléon à haute et à basse énergie par la diffusion Compton virtuelle / Internal structure of the nucleon at low and high energy by virtual Compton scattering

Benali, Meriem 24 May 2016 (has links)
La première partie présente la mesure des polarisabilités généralisées (GPs) électrique αε(Q²) et magnétique βM(Q²) du proton qui sont fonctions du quadri-moment de transfert Q². L'expérience a été réalisée dans le Hall A1 à MAMI (Mayence) avec un faisceau d'énergie de l'ordre de 1 GeV, à Q²=0.45 GeV² (qcm=714 MeV/c et ε=0.63). Le modèle DR (Relations de Dispersion) a été utilisé pour extraire les GPs, αε(Q²) et βM(Q²), ainsi que deux combinaisons linéaires P¿ (Q²) – 1/ε PTT (Q²) et P¿ (Q²). Ces dernières ont été extraites, pour les mêmes données, en utilisant l'approche de basse énergie (LEX) sous le seuil de production du pion. Nos résultats préliminaires montrent un bon accord entre les deux méthodes et offrent une nouvelle contrainte sur la structure du proton à basse énergie. La deuxième partie est dédiée à la mesure de la section efficace totale du processus de diffusion Compton profondément virtuelle (DVCS) sur le neutron à Q²=1.75 GeV² et xB=0.36. Le processus DVCS permet d'extraire des fonctions universelles "distributions généralisées de partons (GPDs)" permettant de comprendre la structure interne du nucléon en terme de partons. Le DVCS sur le neutron est sensible à la GPD E qui est la moins contrainte à ce jour et dont la connaissance est indispensable pour remonter au moment orbital des quarks. Les données analysées proviennent de l'expérience E08-025 effectuée dans le Hall A de JLab (USA) avec un faisceau d'électrons polarisés d'énergie de l'ordre de 6 GeV et deux cibles d'hydrogène et de deutérium. Nos résultats préliminaires montrent, pour la première fois, une contribution (neutron-DVCS + deuton cohérent-DVCS) non nulle et sont très prometteuses en vue d'une extraction de la GPD "E". / The first part presents the measurement of the generalized αε(Q²) electric and magnetic βM(Q²) polarisabilities (GPs) of the proton which depend on the four-momentum transfer  Q². The experiment was performed in Hall A1 at MAMI (Mainz) with a 1 GeV beam energy at Q² =0.45 GeV² (qcm=714 MeV/c and ε=0.63). The dispersion relations model was used to extract the GPs, αε(Q²) and βM(Q²),  and two linear combinations P¿ (Q²) – 1/ε PTT (Q²) and P¿ (Q²). These last ones were extracted, for the same data, using the low-energy approach (LEX) under the pion production threshold. Our preliminary results show a good agreement between both methods and provide a new constraint on the proton structure at low-energy. The second part is dedicated to the measurement of the total cross section of deeply virtual Compton scattering (DVCS) on the neutron at Q²=1.75 GeV² and xB=0.36. The DVCS process allows to extract the universal functions "generalized parton distributions (GPDs)" which provide  a new understanding the nucleon in terms of partons. The DVCS on the neutron is sensitive to E, the less constrained GPD, which allows  to access the orbital momentum of the quarks. The analyzed data were taken in the E08-025 experiment performed in Hall A at JLab (USA) with a polarized electron beam with energy around 6 GeV and two hydrogen and deuterium targets.  Our preliminary results show, for the first time, a  nonzero (neutron-DVCS + coherent-deuteron-DVCS) contribution and are very promising for the extraction of the GPD "E".
17

Deeply virtual Compton scattering at Jefferson Lab / Diffusion Compton profondément virtuelle au Jefferson laboratory

Georges, Frédéric 25 October 2018 (has links)
Introduites au milieu des années 90, les Distributions Généralisées de Partons (GPD) sont aujourd'hui un élément clé dans l'étude de la structure interne du nucléon. Les GPD sont la généralisation des Facteurs de Forme et des Fonctions de Distribution de Partons. Elles englobent la distribution spatiale et la distribution en impulsion des partons à l'intérieur du nucléon, ce qui permet d'en effectuer une tomographie en trois dimensions. De plus, elles permettent d'obtenir le moment orbital angulaire total des quarks grâce à la règle de somme de Ji, ce qui est un élément crucial dans l'élucidation de l'énigme de la structure en spin du nucléon. En décrivant de manière plus complète la structure des hadrons en termes de quarks et gluons, il est possible d'approfondir notre compréhension de la Chromodynamique Quantique. Les GPD sont accessibles expérimentalement à travers les processus d'électro-production exclusifs profonds, et l'un des canaux les plus simples est la Diffusion Compton Profondément Virtuelle (DVCS). Un programme expérimental mondial a été lancé au début des années 2000 afin d'extraire ces GPD. L'expérience DVCS E12-06-114 qui a été effectuée dans le Hall A du Jefferson Laboratory (Virginie, Etats-Unis) entre 2014 et 2016 est incluse dans ce programme. Le but de cette expérience est de mesurer avec grande précision la section efficace DVCS dépendante de l'hélicité en fonction du transfert d'impulsion Q², pour des valeurs fixes de la variable de Bjorken xBj, sur une cible de proton. La récente amélioration à 12 GeV de l'accélérateur permet d'obtenir un bras de levier en Q² plus important que lors des expériences précédentes et de sonder des régions cinématiques encore inexplorées, tandis que le faisceau polarisé d'électrons permet de séparer les contributions des parties réelles et imaginaires de l'amplitude DVCS à la section efficace totale. Dans ce document, un bref résumé du programme expérimental mondial sur l'étude des GPD va être fourni, suivi par la description de l'appareillage et l'analyse des données de l'expérience E12-06-114. Enfin, les résultats des mesures de sections efficaces polarisées et non-polarisées sont présentés et comparés à une sélection de modèles. / Introduced in the mid 90’s, Generalized Parton Distributions (GPDs) are now a key element in the study of the nucleon internal structure. GPDs are a generalization of Form Factors and Parton Distribution Functions. They encapsulate both spatial and momentum distributions of partons inside a nucleon, allowing to perform its three-dimensional tomography. Furthermore, they allow to derive the total orbital angular momentum of quarks through the Ji sum rule, which is a crucial point to unravel the nucleon spin structure. By providing a more complete description of hadrons in terms of quarks and gluons, a deeper understanding of Quantum Chromodynamics can be reached.GPDs are experimentally accessible through deeply exclusive electro-production processes, and one of the simplest channels available is Deeply Virtual Compton Scattering (DVCS). A worldwide experimental program was started in the early 2000’s to extract these GPDs. The DVCS experiment E12-06-114 performed at Jefferson Laboratory Hall A (Virginia, USA) between 2014 and 2016, is encompassed in this program. The aim of this experiment is to extract with high precision the DVCS helicity-dependent cross sections as a function of the momentum transfer Q², for fixed values of the Bjorken variable xBj, on a proton target. The recent upgrade of the accelerator facility to 12 GeV allows to cover a larger Q² range than in previous measurements and probe yet unexplored kinematic regions, while the polarized electron beam allows the separation of the contributions from the real and imaginary parts of the DVCS amplitude to the total cross section. In this document, a brief summary of the worldwide experimental program for the study of GPDs will be provided, followed by a description of the E12-06-114 apparatus and data analysis. Finally, the results of the unpolarized and polarized cross-section measurements are presented and compared to a few selected models.

Page generated in 0.074 seconds