• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplikace metapovrchů pro strukturální zbarvení / Aplikace metapovrchů pro strukturální zbarvení

Červinka, Ondřej January 2021 (has links)
Color filters enable photosensors to obtain spectral composition of incoming radiation, be it to mimic human vision or to separate analytical signals. Efforts to increase the resolution of these photosensors lead to decrease in size of individual picture elements – pixels, which places increasing demands on the color filter technology. Conventional color filters operating on the principle of absorption of light in organic pigments are frequently used, but they are no longer meeting growing requirements of increasing sensor resolution. Here, metasurfaces comes to an aid, utilizing nanostructures to separate colors and thus creating structural coloration. There are many approaches to separate colors using metasurfaces, but each carries certain disadvantages with their principle of operation. In this thesis, we present a novel approach to separate colors which utilizes manipulation of radiation polarization. The presented color filter is first modeled and optimizes through numerical simulations and then manufactured using nanofabrication methods. Finally, the optical response of nanostructures is verified by several optical spectroscopy methods.
2

Half-wave Plates for the Spider Cosmic Microwave Background Polarimeter

Bryan, Sean Alan 11 June 2014 (has links)
No description available.

Page generated in 0.0812 seconds