Spelling suggestions: "subject:"hamiltoneano systems"" "subject:"hamiltoneana systems""
1 |
Existência e concentração de soluções para sistemas elípticos com condição de Neumann / Existence and concentration of solutions to elliptic systems with Neumann boundary conditions.Pimenta, Marcos Tadeu de Oliveira 13 March 2008 (has links)
Estudamos uma classe de sistemas elípticos - \'elipson POT 2\' \'DELTA\' u + u = g(v) em \'ÔMEGA\' - \'elipson POT 2\' \'DELTA\' v + v f(u) em ÔMEGA \' PARTIAL\'u SOBRE \'PARTIAL n = \'PARTIAL v SOBRE PARTIAL n = O sobre \"PARTIAL\'\' ÔMEGA\' onde \' ÔMEGA ESTA CONTIDO EM R POT. N\' é um domínio limitado, com bordo regular e N \' > ou =\' 3. As não linearidades f e g são funções com crescimento superlinear e subcrítico no infinito. Estudamos resultados sobre a existência de uma sequência de soluções que se concentram, quando o parâmetro \'epsilon\' tende a zero, em um ponto da fronteira que maximiza a sua curvatura. Para isso utilizamos um resultado abstrato sobre existência de pontos críticos para funcionais fortemente indefinidos / We study an singularly perturbed Hamiltonean elliptic system - \'elipson POT 2\' \'DELTA\' u + u = g(v) in \'ÔMEGA\' - \'elipson POT 2\' \'DELTA\' v + v f(u) in ÔMEGA \' PARTIAL\'u ON \'PARTIAL n = \'PARTIAL v ON PARTIAL n\' = O sobre \"PARTIAL\'\' ÔMEGA\' when \'ÔMEGA THIS CONTAINED R POT. N\' is a smooth bounded domain, N \' > or =\' 3 and f and g are nonlinearities having superlinear and subcritical growth at infinity. We study an abstract result about existence of critical points of strongly as \' epsilon\' goes to zero, at a point of the boundary which maximizes the mean curvature of the boundary
|
2 |
Existência e concentração de soluções para sistemas elípticos com condição de Neumann / Existence and concentration of solutions to elliptic systems with Neumann boundary conditions.Marcos Tadeu de Oliveira Pimenta 13 March 2008 (has links)
Estudamos uma classe de sistemas elípticos - \'elipson POT 2\' \'DELTA\' u + u = g(v) em \'ÔMEGA\' - \'elipson POT 2\' \'DELTA\' v + v f(u) em ÔMEGA \' PARTIAL\'u SOBRE \'PARTIAL n = \'PARTIAL v SOBRE PARTIAL n = O sobre \"PARTIAL\'\' ÔMEGA\' onde \' ÔMEGA ESTA CONTIDO EM R POT. N\' é um domínio limitado, com bordo regular e N \' > ou =\' 3. As não linearidades f e g são funções com crescimento superlinear e subcrítico no infinito. Estudamos resultados sobre a existência de uma sequência de soluções que se concentram, quando o parâmetro \'epsilon\' tende a zero, em um ponto da fronteira que maximiza a sua curvatura. Para isso utilizamos um resultado abstrato sobre existência de pontos críticos para funcionais fortemente indefinidos / We study an singularly perturbed Hamiltonean elliptic system - \'elipson POT 2\' \'DELTA\' u + u = g(v) in \'ÔMEGA\' - \'elipson POT 2\' \'DELTA\' v + v f(u) in ÔMEGA \' PARTIAL\'u ON \'PARTIAL n = \'PARTIAL v ON PARTIAL n\' = O sobre \"PARTIAL\'\' ÔMEGA\' when \'ÔMEGA THIS CONTAINED R POT. N\' is a smooth bounded domain, N \' > or =\' 3 and f and g are nonlinearities having superlinear and subcritical growth at infinity. We study an abstract result about existence of critical points of strongly as \' epsilon\' goes to zero, at a point of the boundary which maximizes the mean curvature of the boundary
|
3 |
Sistemas Elípticos em R^N via métodos variacionaisSouza, Edna Cordeiro de 27 March 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:06Z (GMT). No. of bitstreams: 1
ArquivoTotal.pdf: 937197 bytes, checksum: 5c6f34c8e250983d1071fcc18f9f9fb7 (MD5)
Previous issue date: 2013-03-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study systems of elliptic equations of gradient and hamiltonean types
by variational methods whose domains is the whole RN. More specifically, we use critical
point theorems of the mountain pass and linking types to prove results of existence of
non-trivial solutions to these problems. / Neste trabalho estudamos sistemas de equações elípticas dos tipos gradiente e hamiltoniano via técnicas variacionais em domínios não limitados. Mais especificamente, utilizamos teoremas de ponto crítico do tipo passo da montanha e linking para provar existência de solução não trivial para estes problemas.
|
Page generated in 0.0764 seconds