• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 53
  • 18
  • 18
  • 16
  • 15
  • 14
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[pt] CONTROLE PREDITIVO BASEADO EM MODELO NÃO LINEAR APLICADO A UMA COLUNA DESPROPANIZADORA / [en] NONLINEAR MODEL PREDICTIVE CONTROL APPLIED TO A DEPROPANIZER COLUMN

ANA CAROLINA GUIMARAES COSTA 30 September 2020 (has links)
[pt] Este trabalho tem como objetivo estudar estratégias de Controle Preditivo baseado em Modelo Não-Linear (NMPC) aplicadas a uma coluna de destilação despropanizadora simulada. Essas colunas são empregadas em unidades de processamento de gás natural (UPGNs) para a separação do produto propano do butano. Colunas de destilação possuem características particularmente desafiadoras sob o ponto de vista de controle, como: não-linearidades, grandes constantes de tempo, atraso, restrições de variáveis e inversão do sinal de ganho estático. Como as medidas de composição frequentemente possuem atrasos e dados esparsos, os sistemas de controle convencionais não são capazes de controlar a composição diretamente e possuem dificuldade em manter os produtos dentro das especificações. Contudo, controladores baseados em modelo possuem a habilidade de prever a composição através do modelo interno do processo, além de serem capazes de lidar com restrições. Na literatura, nenhuma aplicação do modelo de Hammerstein modificado para coluna de destilação ou para sistemas multivariáveis foi encontrada, sendo esta uma novidade. Desta forma, foram estudadas três estratégias de controle: controle PID tradicional, NMPC com modelo de Hammerstein modificado (H-NMPC) e NMPC com modelo por Redes Neurais (NN-NMPC). O sistema estudado foi identificado de forma a se obter valores numéricos adequados aos parâmetros dos modelos. A identificação dos parâmetros dos modelos e os algoritmos de NMPC foram implementados no ambiente MATLAB. A coluna de destilação foi simulada usando o Aspen Plus Dynamics. Como resultado, o H-NMPC teve o melhor desempenho de controle ao rastrear diferentes trajetórias de referência, a desacoplar as variáveis controladas e a rejeitar os distúrbios. Além disso, esta apresentou maior rapidez computacional comparado com a estratégia NNNMPC. / [en] This work aims to study strategies of Nonlinear Model Predictive Control (NMPC) applied to a simulated depropanizer distillation column. These columns are used in natural gas processing units (NGPUs) for the separation of the product propane from butane. Distillation columns have particularly challenging features from the control point of view, such as: nonlinearities, large time constants, delay, variable constraints and static gain signal inversion. Because compositional measures often have delays and sparse data, conventional control systems are not able to control composition directly and have difficulty keeping products within specifications. However, model-based controllers predict composition through the internal process model, besides being able to handle constraints. In the literature, no applications of the modified Hammerstein model for distillation column or multivariable systems was found, so this is a novelty. Therefore, three control strategies were studied: traditional PID control, NMPC with modified Hammerstein model (H-NMPC) and NMPC with neural network model (NN-NMPC). The studied system was identified in order to obtain adequate numerical values of the model parameters. The model identification and the NMPC algorithms were implemented in the MATLAB environment. The distillation column was simulated using Aspen Plus Dynamics. As a result, the H-NMPC provided better control performance for different setpoint tracking, control variables decoupling, and disturbance rejection. Furthermore, it presented faster computational speed compared to NN-NMPC.
32

Maximum Likelihood Estimation of Hammerstein Models / Maximum Likelihood-metoden för identifierig av Hammersteinmodeller

Sabbagh, Yvonne January 2003 (has links)
<p>In this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated. </p><p>Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input. </p><p>Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.</p>
33

Cascade Modeling Of Nonlinear Systems

Senalp, Erdem Turker 01 August 2007 (has links) (PDF)
Modeling of nonlinear systems based on special Hammerstein forms has been considered. In Hammerstein system modeling a static nonlinearity is connected to a dynamic linearity in cascade form. Fundamental contributions of this work are: 1) Introduction of Bezier curve nonlinearity representations / 2) Introduction of B-Spline curve nonlinearity representations instead of polynomials in cascade modeling. As a result, local control in nonlinear system modeling is achieved. Thus, unexpected variations of the output can be modeled more closely. As an important demonstration case, a model is developed and named as Middle East Technical University Neural Networks and Cascade Model (METU-NN-C). Application examples are chosen by considering the Near-Earth space processes, which are important for navigation, telecommunication and many other technical applications. It is demonstrated that the models developed based on the contributions of this work are especially more accurate under disturbed conditions, which are quantified by considering Space Weather parameters. Examples include forecasting of Total Electron Content (TEC), and mapping / estimation of joint angle of simple forced pendulum / estimation of joint angles of spring loaded inverted double pendulum with forced table / identification of Van der Pol oscillator / and identification of speakers. The operation performance results of the International Reference Ionosphere (IRI-2001), METU Neural Networks (METU-NN) and METU-NN-C models are compared qualitatively and quantitatively. As a numerical example, in forecasting the TEC by using the METU-NN-C having Bezier curves in nonlinearity representation, the average absolute error is 1.11 TECu. The new cascade models are shown to be promising for system designers and operators.
34

Maximum Likelihood Estimation of Hammerstein Models / Maximum Likelihood-metoden för identifierig av Hammersteinmodeller

Sabbagh, Yvonne January 2003 (has links)
In this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated. Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input. Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.
35

Nonlinear Model Predictive Control for a Managed Pressure Drilling with High-Fidelity Drilling Simulators

Park, Junho 01 April 2018 (has links)
The world's energy demand has been rapidly increasing and is projected to continue growing for at least the next two decades. With increasing global energy demand and competition from renewable energy, the oil and gas industry is striving for more efficient petroleum production. Many technical breakthroughs have enabled the drilling industry to expand the exploration to more difficult drilling such as deepwater drilling and multilateral directional drilling. For example, managed pressure drilling (MPD) offers ceaseless operation with multiple manipulated variables (MV) and wired drill pipe (WDP) provides two-way, high-speed measurements from bottom hole and along-string sensors. These technologies have maximum benefit when applied in an automation system or as a real-time advisory tool. The objective of this study is to investigate the benefit of nonlinear model-based control and estimation algorithms with various types of models. This work presents a new simplified flow model (SFM) for bottomhole pressure (BHP) regulation in MPD operations. The SFM is embedded into model-based control and estimation algorithms that use model predictive control (MPC) and moving horizon estimation (MHE), respectively. This work also presents a new Hammerstein-Wiener nonlinear model predictive controller for BHP regulation. Hammerstein-Wiener models employ input and output static nonlinear blocks before and after linear dynamics blocks to simplify the controller design. The control performance of the new Hammerstein-Wiener nonlinear controller is superior to conventional PID controllers in a variety of drilling scenarios. Conventional controllers show severe limitations in MPD because of the interconnected multivariable and nonlinear nature of drilling operations. BHP control performance is evaluated in scenarios such as drilling, pipe connection, kick attenuation, and mud density displacement and the efficacy of the SFM and Hammerstein-Wiener models is tested in various control schemes applicable to both WDP and mud pulse systems. Trusted high-fidelity drilling simulators are used to simulate well conditions and are used to evaluate the performance of the controllers using the SFM and Hammerstein-Wiener models. The comparison between non-WDP (semi-closed loop) and WDP (full-closed loop) applications validates the accuracy of the SFM under the set of conditions tested and confirms comparability with model-based control and estimation algorithms. The SFM MPC maintains the BHP within ± 1 bar of the setpoint for each investigated scenario, including for pipe connection and mud density displacement procedures that experience a wider operation range than normal drilling.
36

A Hundred Million Messages: Reflections on Representation in Rodgers andHammerstein’s Flower Drum Song

Thalheim, Sabina M. 09 August 2013 (has links)
No description available.
37

Nonlinear Electrical Compensation For The Coherent Optical OFDM System

Pan, Jie 17 December 2010 (has links)
No description available.
38

A Hammerstein-bilinear approach with application to heating ventilation and air conditioning systems

Zajic, I. January 2013 (has links)
This thesis considers the development of a Hammerstein-bilinear approach to non-linear systems modelling, analysis and control systems design, which builds on and extends the applicability of an existing bilinear approach. The underlying idea of the Hammerstein-bilinear approach is to use the Hammerstein-bilinear system models to capture various physical phenomena of interest and subsequently use these for model based control system designs with the premise being that of achieving enhanced control performance. The advantage of the Hammerstein-bilinear approach is that the well-structured system models allow techniques that have been originally developed for linear systems to be extended and applied, while retaining moderate complexity of the corresponding system identification schemes and nonlinear model based control designs. In recognition of the need to be able to identify the Hammerstein-bilinear models a unified suite of algorithms, being the extensions to the simplified refined instrumental variable method for parameter estimation of linear transfer function models is proposed. These algorithms are able to operate in both the continuous-time and discrete-time domains to reflect the requirements of the intended purposes of the identified models with the emphasis being placed on straightforward applicability of the developed algorithms and recognising the need to be able to operate under realistic practical system identification scenarios. Moreover, the proposed algorithms are also applicable to parameter estimation of Hammerstein and bilinear models, which are special cases of the wider Hammerstein-bilinear model class. The Hammerstein-bilinear approach has been applied to an industrial heating, ventilation and air conditioning (HVAC) system, which has also been the underlying application addressed in this thesis. A unique set of dynamic control design purpose oriented air temperature and humidity Hammerstein-bilinear models of an environmentally controlled clear room manufacturing zone has been identified. The greater insights afforded by the knowledge of the system nonlinearities then allow for enhanced control tuning of the associated commercial HVAC control system leading to an improved overall control performance.
39

Design and implementation of adaptive baseband predistorter for OFDM nonlinear transmitter : simulation and measurement of OFDM transmitter in presence of RF high power amplifier nonlinear distortion and the development of adaptive digital predistorters based on Hammerstein approach

Sadeghpour Ghazaany, Tahereh January 2011 (has links)
The objective of this research work is to investigate, design and measurement of a digital predistortion linearizer that is able to compensate the dynamic nonlinear distortion of a High Power Amplifier (PA). The effectiveness of the proposed baseband predistorter (PD) on the performance of a WLAN OFDM transmitter utilizing a nonlinear PA with memory effect is observed and discussed. For this purpose, a 10W Class-A/B power amplifier with a gain of 22 dB, operated over the 3.5 GHz frequency band was designed and implemented. The proposed baseband PD is independent of the operating RF frequency and can be used in multiband applications. Its operation is based on the Hammerstein system, taking into account PA memory effect compensation, and demonstrates a noticeable improvement compared to memoryless predistorters. Different types of modelling procedures and linearizers were introduced and investigated, in which accurate behavioural models of Radio Frequency (RF) PAs exhibiting linear and nonlinear memory effects were presented and considered, based on the Wiener approach employing a linear parametric estimation technique. Three new linear methods of parameter estimation were investigated, with the aim of reducing the complexity of the required filtering process in linear memory compensation. Moreover, an improved wiener model is represented to include the nonlinear memory effect in the system. The validity of the PA modelling approaches and predistortion techniques for compensation of nonlinearities of a PA were verified by several tests and measurements. The approaches presented, based on the Wiener system, have the capacity to deal with the existing trade-off between accuracy and convergence speed compared to more computationally complex behavioural modelling algorithms considering memory effects, such as those based on Volterra series and Neural Networks. In addition, nonlinear and linear crosstalks introduced by the power amplifier nonlinear behaviour and antennas mutual coupling due to the compact size of a MIMO OFDM transmitter have been investigated.
40

Síntese das técnicas de identificação de sistemas não lineares: estruturas de modelo de Hammerstein-Wiener e NARMAX

Binkowski, Cassio 14 September 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-12-23T10:42:58Z No. of bitstreams: 1 Cassio Binkowski_.pdf: 1965327 bytes, checksum: 87b7380f1bab367237fb868e0de20388 (MD5) / Made available in DSpace on 2016-12-23T10:42:59Z (GMT). No. of bitstreams: 1 Cassio Binkowski_.pdf: 1965327 bytes, checksum: 87b7380f1bab367237fb868e0de20388 (MD5) Previous issue date: 2016-09-14 / Nenhuma / A identificação de sistemas está longe de ser uma tarefa nova. Sendo inicialmente proposta na metade do século XX, foi extensamente desenvolvida para sistemas lineares, devido às exigências da época relacionadas à complexidade dos sistemas e também do poder computacional, atingindo excelente resultados. No entanto, com o aumento da complexidade dos sistemas e das exigências de controle, os modelos lineares não mais conseguiam representar os sistemas em toda a faixa de operação exigida, sendo assim requerendo uma aplicação dos modelos não-lineares. Visto que todos os sistemas presentes na natureza possuem certo grau de não linearidade, é correto afirmar que um modelo não-linear é capaz de representar as dinâmicas dos sistemas de forma mais compreensiva que um modelo linear. A identificação de sistemas não lineares foi então estudada e diversos modelos foram propostos, atingindo ótimos resultados. Nesse trabalho foi realizado um estudo de dois modelos não-lineares, NARMAX e Hammerstein-Wiener, aplicando esses modelos a dois processos simulados. Foram então derivados dois algoritmos para realizar a estimação dos parâmetros dos modelos NARMAX e Hammerstein-Wiener, utilizando um estimador ortogonal, e também um algoritmo para geração de sinais de entrada multinível. Os modelos foram então estimados para os sistemas simulados, e comparados utilizando os critérios AIC, FPE, Lipschitz e de correlação cruzada de alta ordem. Os melhores resultados foram obtidos com os modelos Hammerstein-Wiener-OLS e NARMAX-OLS, ao contrário do modelo NARMAX-RLS. No entanto, devido a resultados bastante divergentes entre os modelos, pode-se concluir que essa área ainda carece de desenvolvimento de técnicas precisas para comparação e avaliação de modelos, bem como quanto à quantificação do nível de não-linearidade do sistema em questão. / The task of system identification is far from being a new one. It was initially proposed in the mid of the 20th century, and had then been extensively developed for linear systems, due to the demands of that time concerning computational power, systems complexity and control requirements. It has achieved excellent results in this approach. However, due to the rise of systems complexity and control requirements, linear models were no longer able to meet the desired accuracy and larger operating range, and therefore the usage nonlinear models were pursued. As all systems in nature are nonlinear to some extent, it is correct to state that nonlinear models can represent a whole lot more of systems’ dynamics than linear models. Nonlinear models were then studied, and several techniques were presented, being able to achieve very good results. In this work, two of the available nonlinear models were studied, namely NARMAX and Hammerstein-Wiener, applying these models in two simulated systems. Two algorithms were then derived to estimate parameters for NARMAX and Hammerstein-Wiener models using an orthogonal estimator, and also an algorithm for generating multi-level input signals. The models were then estimated to the simulated systems, and compared using the AIC, FPE, Lipschitz and high-order cross-correlation criteria. The best results were obtained for the Hammerstein-Wiener-OLS and NARMAX-OLS models, as opposed to the NARMAX-RLS model. However, due to divergent observed results between models, it can be concluded that precise methods for model comparison and validation still needs to be developed, as well as a method for nonlinearity quantification for the system in hand.

Page generated in 0.0759 seconds