1 |
Modelling the growth and resource allocation dynamics of juvenile salmonidsJones, Wayne January 2002 (has links)
No description available.
|
2 |
Devitrification Kinetics and Optical Stability of Optical Fibers at High TemperaturesYakusheva, Anastasia A. 07 June 2018 (has links)
Reliable sensing and monitoring systems based on optical fibers operating at high temperatures and in harsh environments are of high demand. One of the limitations of such systems is the devitrification of the fused silica based core and cladding glass at elevated temperatures. Crystallites can nucleate on the surface of the cladding and grow into the core. The formation of these crystalline flaws in the optical fiber causes stress concentration and extrinsic optical scattering and in addition leads to decreased mechanical properties and reduced optical stability. Commercial optical fibers of different compositions and core-cladding design were characterized in this study with respect to crystallization rate under various conditions. The optical stability was monitored with an optical spectrum analyzer. The crystallites were characterized with SEM and optical microscopy. The activation energies of crystallization for High OH and Low OH multimode fibers were estimated by measuring the crystal growth rate at different temperatures. The residual stress resulting from the formation of the crystals, which can lead to decreased mechanical performance of the fibers, was characterized with polarized light optical microscopy. The influence of water vapor in the atmosphere on the crystallization rate was determined. The features induced in the attenuation spectra were consistent with hydroxyl (OH) absorption peak. Spectral features such as thermal emission and hydroxyl absorption bands are discussed.
The results obtained in this study can be used for selecting optical fibers for high temperature applications. / Master of Science / Reliable sensing and monitoring systems based on glass optical fibers operating at high temperatures and in harsh environments are in high demand. One of the limitations of such systems is the tendency of glass material to crystallize at elevated temperatures.
Crystallites can nucleate on the surface of the fiber and grow inwards, impairing the optical and mechanical properties of the optical fiber. The formation of these crystalline flaws in the optical fiber can decrease the mechanical strength by causing stress concentrations and leading to formation of cracks, and reduce optical stability by causing light to scatter from the crystals. Commercial optical fibers of different compositions and geometry were characterized in this study with respect to crystal growth rate under various conditions, such as different temperatures (400-1350 °C), and different atmospheres (laboratory air and water vapor). The effect of crystals was demonstrated with respect to optical and mechanical performance.
The results obtained in this study can be used for selecting optical fibers for high temperature applications.
|
3 |
Microsystems for Harsh EnvironmentsKnaust, Stefan January 2015 (has links)
When operating microsystems in harsh environments, many conventionally used techniques are limiting. Further, depending on if the demands arise from the environment or the conditions inside the system, different approaches have to be used. This thesis deals with the challenges encountered when microsystems are used at high pressures and high temperatures. For microsystems operating at harsh conditions, many parameters will vary extensively with both temperature and pressure, and to maintain control, these variations needs to be well understood. Covered within this thesis is the to-date strongest membrane micropump, demonstrated to pump against back-pressures up to 13 MPa, and a gas-tight high pressure valve that manages pressures beyond 20 MPa. With the ability to manipulate fluids at high pressures in microsystems at elevated temperatures, opportunities are created to use green solvents like supercritical fluids like CO2. To allow for a reliable and predictable operation in systems using more than one fluid, the behavior of the multiphase flow needs to be controlled. Therefore, the effect of varying temperature and pressure, as well as flow conditions were investigated for multiphase flows of CO2 and H2O around and above the critical point of CO2. Also, the influence of channel surface and geometry was investigated. Although supercritical CO2 only requires moderate temperatures, other supercritical fluids or reactions require much higher temperatures. The study how increasing temperature affects a system, a high-temperature testbed inside an electron microscope was created. One of the challenges for high-temperature systems is the interface towards room temperature components. To circumvent the need of wires, high temperature wireless systems were studied together with a wireless pressure sensing system operating at temperatures up to 1,000 °C for pressures up to 0.3 MPa. To further extend the capabilities of microsystems and combine high temperatures and high pressures, it is necessary to consider that the requirements differs fundamentally. Therefore, combining high pressures and high temperatures in microsystems results in great challenges, which requires trade-offs and compromises. Here, steel and HTCC based microsystems may prove interesting alternatives for future high performance microsystems.
|
4 |
Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure SensorsXiao, Hai 04 September 2000 (has links)
To fulfill the objective of providing robust and reliable fiber optic pressure sensors capable of operating in harsh environments, this dissertation presents the detailed research work on the design, modeling, implementation, analysis, and performance evaluation of the novel fiber optic self-calibrated interferometric/intensity-based (SCIIB) pressure sensor system.
By self-referencing its two channels outputs, for the first time to our knowledge, the developed SCIIB technology can fully compensate for the fluctuation of source power and the variations of fiber losses. Based on the SCIIB principle, both multimode and single-mode fiber-based SCIIB sensor systems were designed and successfully implemented. To achieve all the potential advantages of the SCIIB technology, the novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance fiber optic Fabry-Perot sensor probes with excellent mechanical strength and temperature stability. Mathematical models of the sensor in response to the pressure and temperature are studied to provide a guideline for optimal design of the sensor probe. The solid and detailed noise analysis is also presented to provide a better understanding of the performance limitation of the SCIIB system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. The major test results give us the confidence to believe that the development of the fiber optic SCIIB pressure sensor system provides a reliable pressure measurement tool capable of operating in high pressure, high temperature harsh environments. / Ph. D.
|
5 |
The processing, microstructure and creep properties of Pb-free solders for harsh environmentsGodard Desmarest, Sophie January 2013 (has links)
The constitutive mechanical behaviour with a focus on creep of Sn-Pb and various Sn-Ag-Cu based Pb-free solders in the 25-150°C temperature range has been studied using nanoindentation and various new meso-scale tests. All alloys have been studied as bulk wave soldering bars, as-received solder balls and solder joints. Ball Grid Array (BGA) solder joints in a typical electronic configuration were manufactured in-house using both Cu and Pd-Ag metallizations. Microstructural characterisation of all configurations used various types of optical and electron microscopy and showed that the solder pad metallization type played a major role in intermetallic compound (IMC) formation. There were comparatively fine and coarse-grained microstructures in both as-received solder balls and BGA solder joints depending on ball diameter. Nanoindentation creep measurements in the stress range 20-500MPa showed that grain boundary sliding occurred together with dislocation glide and dislocation climb in the low temperature (25-50°C) and high temperature (100-150°C) regimes respectively. Smaller grain sizes (<20µm) encouraged grain boundary sliding that enhanced creep. New elevated temperature mechanical tests were developed using the nanoindentation platform to enable testing of entire solder joints in shear and compression, with stresses in the 1E-2 - 3MPa range, more relevant to in-service conditions than those in nanoindentation. Meso-scale spherical indentation creep behaviour in compression on as-reflowed solder balls showed good agreement with that obtained by conventional nanoindentation. However, when BGAs were tested in shear, the solder microstructure had relatively little influence on the creep response, which was significantly less creep resistant than individual phases in the ball obtained by nanoindentation or the ball itself obtained by meso-scale spherical indentation. In shear, the creep conformed to diffusion controlled behaviour and interfacial microstructure was suggested to now control creep response, with the microstructure of the majority of the solder joint playing only a minor role.
|
6 |
Fiber-Optics Based Pressure and Temperature Sensors for Harsh EnvironmentsTwedt, Jason Christopher 24 May 2007 (has links)
Monitoring accurate temperature and pressure profiles in harsh environments is currently in high demand in aerospace gas turbine engines and nuclear reactor simulators. Having the ability to measure both quantities continuously over a region, without thermal coupling, using a sensor with a small size (envelope) is also highly desirable. Currently available MEMS (microelectromechanical systems) provide effective small scale pressure and temperature measurement devices, however, they have only been shown to be effective up to 600C and lack the ability to perform distributed measurements unless combined with fiber-optic techniques. In general, fiber-optics provide many advantages over electrical based sensors and are the ideal choice for high temperature regimes and distributed sensing. In this thesis, preliminary designs and suggested future work are presented for a sensor built within an 3.175 mm radius envelope and capable of distributed pressure and temperature sensing up to temperatures reaching 800C. Finite element analysis via ANSYS, along with analytical verification models have been used for the design evolution. Diaphragm based designs, seem to provide easy fabrication methods and good sensitivity, however, for this design to be realized at high temperature operation, a robust bonding method must be chosen to avoid unwanted deformation due to misfit strains. / Master of Science
|
7 |
Extreme Implementations of Wide-Bandgap Semiconductors in Power ElectronicsColmenares, Juan January 2016 (has links)
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium-nitride (GaN) allow higher voltage ratings, lower on-state voltage drops, higher switching frequencies, and higher maximum temperatures. All these advantages make them an attractive choice when high-power density and high-efficiency converters are targeted. Two different gate-driver designs for SiC power devices are presented. First, a dual-function gate-driver for a power module populated with SiC junction field-effect transistors that finds a trade-off between fast switching speeds and a low oscillative performance has been presented and experimentally verified. Second, a gate-driver for SiC metal-oxide semiconductor field-effect transistors with a short-circuit protection scheme that is able to protect the converter against short-circuit conditions without compromising the switching performance during normal operation is presented and experimentally validated. The benefits and issues of using parallel-connection as the design strategy for high-efficiency and high-power converters have been presented. In order to evaluate parallel connection, a 312 kVA three-phase SiC inverter with an efficiency of 99.3 % has been designed, built, and experimentally verified. If parallel connection is chosen as design direction, an undesired trade-off between reliability and efficiency is introduced. A reliability analysis has been performed, which has shown that the gate-source voltage stress determines the reliability of the entire system. Decreasing the positive gate-source voltage could increase the reliability without significantly affecting the efficiency. If high-temperature applications are considered, relatively little attention has been paid to passive components for harsh environments. This thesis also addresses high-temperature operation. The high-temperature performance of two different designs of inductors have been tested up to 600_C. Finally, a GaN power field-effect transistor was characterized down to cryogenic temperatures. An 85 % reduction of the on-state resistance was measured at −195_C. Finally, an experimental evaluation of a 1 kW singlephase inverter at low temperatures was performed. A 33 % reduction in losses compared to room temperature was achieved at rated power. / <p>QC 20160922</p>
|
8 |
Environmental harshness and its effect on appetite and the desire for conspicuous signalling productsSwaffield, James B. January 2017 (has links)
There is often an assumption that there is a right and a wrong way for consumers to behave. For example, with regard to eating, people should make food choices based on maximizing vitamins and minerals and not consuming more calories than one expends in a day. Likewise, it is assumed that buying products to conspicuously signal a message to another is wasteful and maladaptive. The research in this thesis challenges these assumptions and argues that these behaviours can be both adaptive and maladaptive depending on one’s environmental conditions. In this thesis, I describe three experiments that examine how perception of environmental harshness affects appetite for different types of foods. The data shows that food desirability in adulthood varies depending on early childhood socio-economic status, the type of environmental stressor (harsh social, harsh economic and harsh physical safety) and the intensity of the stressors within each of these environments. It was also found that different types of environmental harshness differentially affects food desire based on energy density and food category type. In addition to the experiments on harshness and food desirability, I have examined how environmental harshness affects desire for products that are used to conspicuously signal information to others. For example, under conditions of environmental stress, products may be used to advertise that a male possesses financial or physical power which is desirable to a potential mate. Likewise, a women may buy products to display she possess financial power or she may purchase products that augment her beauty and sexual attractiveness. These studies reveal that product desire is also affected by different types of environmental harshness and the intensity of the stress generated by these environmental conditions. Through the research described in this thesis, we gain a more comprehensive understanding of the proximate variables that influence two subsets of consumer behaviour, namely food desire and product signalling, and how these behaviours may have been selected for due to their adaptive value.
|
9 |
Étude, élaboration et caractérisation d'hétérostructures «auto-protégées» à base d'ondes élastiques / Study, elaboration and characterization of packageless heterostructures based on elastic waveLegrani, Ouarda 14 November 2012 (has links)
L'objectif de cette thèse est de réaliser des hétérostructures packageless par l'intermédiaire d'une couche protectrice contre les environnements atmosphériques néfastes tels que l'oxydation et l'humidité mais aussi dans les milieux agressifs à hautes températures. La première hétérostructure envisagée dans cette étude, utilise le principe des ondes isolées. Le silicium a été employé en combinaison avec le ZnO car il offre de bonnes propriétés électroacoustiques mais aussi la possibilité de travailler à de hautes fréquences. Ainsi, cette configuration AlN/IDT/ZnO/Si a été principalement choisie pour des applications en environnements néfastes et intégrable dans la technologie CMOS. Par ailleurs, une couche de protection d'AlN permettra à l'onde de se confiner dans la couche active de ZnO et de rester insensible à la surface mais sensible à la température. Le ZnO étant toutefois conducteur à haute température (> 400°C), cette hétérostructure reste peut applicable en milieux sévères à haute température. C'est pourquoi une seconde hétérostructure packageless utilisant comme base l'IDT/AlN/Saphir a été étudiée dans ce manuscrit. Il s'agit donc de protéger les IDTs par un film mince contre les phénomènes d'agglomération des électrodes à hautes températures (1000 °C) / The objective of this thesis is to realize heterostructures packageless through a protective layer against harmful atmospheric environments such as oxidation and moisture and also in aggressive environments (high temperatures). The first heterostructure considered in this study, uses the principle of wave isolated. Silicon was used in combination with ZnO as it offers good performances and the possibility to work at high frequencies. Thus, this configuration AlN/IDT/ZnO/Si was chosen for applications in environments with harmful and integrated in CMOS technology. In addition, a protective layer of AlN allows the wave is confined in the active layer of ZnO and remains insensitive to the surface but sensitive to temperature. However, ZnO is conductive at high temperature (> 400 ° C) wich is limited her utilization in harsh environments. This is why a second packageless heterostructure using the IDT/AlN/sapphire has been studied in this manuscript. It is therefore to protect the IDTs by a thin film against the phenomena of agglomeration of the electrodes at high temperatures (1000 ° C)
|
10 |
Assemblages électroniques par frittage d’argent pour équipements aéronautiques fonctionnant en environnements sévères / Electronic assembly using silver sintering for aircraft equipments in harsh environmentsGeoffroy, Thomas 10 April 2017 (has links)
La majeure partie des équipements électroniques qui nous entourent fonctionne dans des environnements plutôt cléments où les variations thermiques sont d’amplitudes faibles à modérées. En aéronautique, l’utilisation d’équipements fonctionnant dans des milieux beaucoup plus hostiles que les environnements traditionnellement rencontrés en électronique pourrait permettre d’améliorer considérablement les performances des aéronefs, notamment en terme de poids, de consommation de carburant et de coût de maintenance. Toutefois, l’utilisation d’assemblages électroniques « classiques » dans des environnements où les variations thermiques sont fortes pose des problèmes techniques majeurs : les hautes températures peuvent faire fondre les alliages de brasure courants et la fatigue thermomécanique peut très rapidement provoquer la défaillance des assemblages. Pour pallier ces problèmes, les composants électroniques peuvent être reportés par frittage d’argent dans les circuits. En effet, cette technologie d’assemblage permet de remplacer les brasures usuelles par un matériau ayant un point de fusion nettement plus élevé : l’argent pur (Tfus=962°C). Cependant, le frittage a tendance à produire des matériaux poreux et la porosité peut avoir un effet néfaste sur le vieillissement des joints d’attache des composants électroniques. Par conséquent, dans cette thèse, les liens existant entre profil thermique de frittage et porosité ainsi que ceux existant entre porosité et résistance aux cycles thermiques (-65°C/+200°C) ont été étudiés. Par ailleurs, la question des interactions métallurgiques pouvant se produire à hautes températures entre l’argent fritté et certaines métallisations usuelles de composants et de substrats a également été abordée. / Most of usual electronic devices operate in environments where the amplitude of temperature changes is limited. The use of electronic equipment operating in harsh environments in aircrafts could however improve their performances, especially their weight, their gas consumption and their cost of maintenance. Unfortunately the use of classical electronic assembly technologies in environments where wide amplitude thermal variations take place raises major technical issues: the high temperatures reached in some parts of aircrafts can melt usual brazing materials and thermomechanical fatigue can induce early failure of the assemblies. To prevent these problems from happening, electronic components can be attached using silver sintering. One of the strengths of this technology is that it allows the replacement of traditional brazing material by a high melting point material: pure silver (Tm=962°C). Silver sintering nevertheless leads to a porous material and porosity can have a negative impact on the ageing of the attachment joints of electronic components. One of the goals of this PhD thesis is therefore to study the link between the sintering temperature profile and the porosity of silver. Furthermore the impact of different rates of porosity on the mechanical behavior of silver has been assessed. These investigations have mainly been focused on the fatigue behavior of porous silver electrical junctions under thermal cycling (-65°C/+200 °C). The question of the metallurgical interactions that may exist at high temperatures between silver and some of the usual metallization of components and/or substrates has lastly been addressed.
|
Page generated in 0.0586 seconds