• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 43
  • 43
  • 37
  • 17
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Geothermal processes at the Galapagos Spreading Center /

Green, Kenneth Edward. January 1900 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1980. / Supervised by Richard P. Von Herzen. Vita. Includes bibliographical references (leaves 223-226).
12

Diagnostic study on the forcing of the Ferrel cell

Salustri, Giovanna January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1982. / Microfiche copy available in Archives and Science / Bibliography: leaves 39-41. / by Giovanna Salustri. / M.S.
13

Spectral analysis of marine atmosphere time series.

Jakobsson, Thor Edward January 1973 (has links)
No description available.
14

On the mechanisms of heat loss beneath continents and oceans

Jaupart, Claude January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 200-215. / by Claude Jaupart. / Ph.D.
15

Heat Fluxes in Tampa Bay, Florida

Sopkin, Kristin L 08 April 2008 (has links)
The Meyers et al. (2007) Tampa Bay Model produces water level and three-dimensional current and salinity fields for Tampa Bay. It is capable of computing temperature but is presently run without active thermodynamics. Variations in water temperature are driven by heat exchange at the water-atmosphere boundary and advective heat flux at the mouth of the bay. The net heat exchange surface boundary condition is required for computations of three-dimensional temperature fields. Components of the surface heat budget were measured or derived at an observational tower in Middle Tampa Bay. Net heat exchange at the surface of Tampa Bay was computed from June 2002 to May 2005. Total heat energy gained or lost at the bay-atmosphere interface includes turbulent and radiative heat fluxes. An initial examination of turbulent heat exchange, the portion of total surface heat flux driven by atmospheric turbulence, demonstrated the skill of a bulk flux algorithm (TOGA COARE v. 3.0) in predicting measured sensible heat flux over Tampa Bay (R² = 0.80 and RMSE of 11.02 W/m² from June through November of 2002). Insolation was measured directly at the observational tower. Solar radiation is reflected in proportion to sea surface albedo, computed following Payne (1972). Based upon Secchi depth readings, Tampa Bay was classified as a water body type 7. The amount of penetrating insolation reflected from the bottom was computed for this type 7 estuary. Upwelling longwave radiation is emitted in proportion to the water temperature according to the Stefan-Boltzmann law. Eleven bulk formulas for computing downwelling longwave radiation were assessed for skill in reproducing observations made at buoys moored on the West Florida Shelf. Berliand and Berliand (1952) best represented downwelling longwave heat flux measurements at the buoys and is appropriate for application over Tampa Bay. Surface heat flux dominates cooling in fall and warming in spring while advective heat exchange becomes important during the summer. Extreme events, including tropical cyclones and extratropical fronts, dramatically impact surface heat exchange, driving rapid cooling. The methods applied in computation of heat flux components are amenable to real-time modeling exercises.
16

A hydrological analysis of icing formation /

Hu, Xiaogang. January 1996 (has links)
No description available.
17

Air mass modification over the Gulf of St. Lawrence.

Morin, Patrice Louis Joseph January 1973 (has links)
No description available.
18

A hydrological analysis of icing formation /

Hu, Xiaogang. January 1996 (has links)
Icings are common hydrological phenomena in arctic and subarctic regions. Their bodies are made up of the accumulation of ice layers formed by the freezing of overflow water during the winter season. Icing formation is a process involving a complex system of thermodynamics and hydrodynamics. In this thesis, the formation mechanics of river icings and ground icings are studied in terms of both thermal and hydrological processes. / The energy exchange systems during icing layer formation involve two ice water interfaces and some intra-layer water flow. Using energy balance analysis, this research finds that the outgoing energy components can be ranked according to their importance, with sensible heat being the most important component, radiation heat loss being of secondary importance, and latent heat loss being the least important factor. Further, this research illustrates that the heat conduction between the underlying ice and a newly formed icing layer is time dependent. For example, during the first half cycle of icing layer formation, heat is conducted into the underlying ice, but during the second half of the cycle the heat is conducted in an opposite direction. / During icing layer formation, the energy input is supplied mainly by water and incoming solar radiation. Intra-layer running water provides a significant amount of energy when air temperatures are milder, but its significance decreases when air temperatures become colder. Solar radiation during the day may also play an important role in the energy supply regime. / River icing formation involves several hydrological processes. The location of a river icing is basically controlled by the channel slope. The damming effect of icing mass plays a significant role in the extension of the icing body, especially in the upstream direction. River icings grow slowly, and generally experience three stages of development, namely the 'freeze-up' stage, 'obstruction' stage and 'overflow' stage, the third stage dominating icing growth. The formation of each icing layer is virtually a small-scale reproduction of these three stages. The model simulation shows that the thickness of icing accumulation increases with an increase in the initial water depth in the channel, but simulation also shows that there is a limiting threshold. The thickness of icing accumulation decreases when the initial channel water depth exceeds this threshold. / The growth of an icing is an event-dominated discontinuous process. Even during one icing layer formation, simultaneous growth occurs only within a very limited distance. At a specific location, icing growth is related temporally only over a short period of time. As a discontinuous process, icing spreading and thickening during an overflow event depends entirely on the climatic and topographical conditions. / Even though icing layering is influenced by many variables, under small discharge rates, as in the case of ground icing growth, statistical analyses show that the mean spreading length of an overflow event can be described efficiently by five variables: discharge, the temperature of the water, the product of air temperature and wind speed, air temperature and the icing surface slope previous to overflow. The maximum spreading length, however, may only be controlled by four variables: discharge, water temperature, air temperature and the product of air temperature and wind speed. Under field conditions, when wind speed is not measured, this wind related variable may be dropped with only a small decrease in confidence level.
19

Spatial distribution and co-occurrence of surface-atmosphere exchange processes

Mitic, Constance M. (Constance Maria) January 1993 (has links)
Grid-type flight patterns at an altitude of 30 m were executed in the summer of 1991 by the Canadian Twin Otter flux research aircraft over a 15 km x 16.5 km agricultural area, as part of the San Joaquin Valley Air Quality Study/California Ozone Deposition Experiment (SJVAQS/CODE). Fast-response on board sensors for turbulence, temperature and gas concentrations permitted the spatial mapping of fluxes of momentum, sensible heat, moisture, CO$ sb2$ and ozone. Flux maps were produced in the form of GIS-interpolated 1 km averages, and in the discrete form of those coherent structures of the turbulent process, intermittent in time and space, which dominate the exchange of scalars between the ground and the atmosphere. The magnitude of surface-related mesoscale contributions to the flux was also quantified. Flux observations were compared against radiometrically observed surface temperatures and vegetation indices (NDVI), observed from aircraft and satellite (NOAA AVHRR), and surface characteristics from ground surveys. / Flux maps showed the expected correspondence between greenness, evapo(trans)ration (ET) and CO$ sb2$ exchange. Discrepancies between ozone flux maps and maps of greenness, ET or CO$ sb2$ were more pronounced than would be consistent with the hypothesis of stomatal control of ozone uptake. More insight into control mechanisms on ozone exchange is gained by an examination of the spatial coincidence between transporting structures for the various scalars (heat, moisture, CO$ sb2$ and ozone), through the Jaccard coefficient of co-location (J), which showed a lower value ($ rm0.3<J<0.6$) for coincidence in transfer between ozone and moisture than between moisture and CO$ sb2$ ($ rm0.5<J<0.8$). Analysis of J over the various land-use and crop-types in the test area, opens a door to a more differentiated understanding of the physical and physiological driving forces behind ozone uptake by soil and vegetation.
20

A technique for in-flight calibration of the white sensor on satellite Explorer VII

Tucker, Gordon L. January 1962 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1962. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 12).

Page generated in 0.0618 seconds