• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical heat flux estimation for annular channel geometry

Pagh, Richard T. 26 April 2001 (has links)
Critical Heat Flux (CHF) is an important safety parameter for the design of nuclear reactors. The most commonly used predictive tool for determination of CHF is a look-up table developed using tube data with an average hydraulic test diameter of 8 mm. There exist in the world today nuclear reactors whose geometry is annular, not tubular, and whose hydraulic diameter is significantly smaller than 8 mm. In addition, any sub-channel thermal hydraulic model of fuel assemblies is annular and not tubular. Comparisons were made between this predictive tool and annular correlations developed from test data. These comparisons showed the look-up table over-predicts the CHF values for annular channels, thus questioning its ability to perform correct safety evaluations. Since no better tool exists to predict CHF for annular geometry, an effort was undertaken to produce one. A database of open literature annular CHF values was created as a basis for this new tool. By compiling information from eighteen sources and requiring that the data be inner wall, unilaterally, uniformly heated with no spacers or heat transfer enhancement devices, a database of 1630 experimental values was produced. After a review of the data in the database, a new look-up table was created. A look-up table provides localized control of the prediction to overcome sparseness of data. Using Shepard's Method as the extrapolation technique, a regular mesh look-up table was produced using four main variables: pressure, quality, mass flux, and hydraulic diameter. The root mean square error of this look-up table was found to be 0.8267. However, by fixing the hydraulic diameter locations to the database values, the root mean square error was further reduced to 0.2816. This look-up table can now predict CHF values for annular channels over a wide range of fluid conditions. / Graduation date: 2001
2

Development of a Direct-Measurement Thin-Film Heat Flux Array

Ewing, Jerrod Albert 16 January 2007 (has links)
A new thin film heat flux array (HFA) was designed and constructed using a series of nickel/copper thermocouples deposited onto a thin Kapton® polyimide film. The HFA is capable of withstanding temperatures up to 300 °C and produces signals of 42 μV/(W/cm²). As a result of its thin film construction, the HFA has a first order time constant of 32 ms. Calibrations were completed to determine the gage's output as well as its time response. In order to measure the signal from the HFA amplifiers were designed to increase the magnitude of the voltage output. An example case is given where the HFA is used in an experiment to correlate time-resolved heat flux and velocities. / Master of Science
3

Development of a Novel, Manufacturing Method of Producing Cost-Effective Thin-Film Heat Flux Sensors

Cherry, Rande James 13 November 2015 (has links)
A new method of manufacturing heat flux sensors was developed using a combination of copper etching and stencil printing nickel/silver conductive ink thermocouple materials onto a thin-film polyimide Kapton® substrate. The semi-automated production capabilities of this manufacturing process significantly decrease the cost of producing thin-film heat flux sensors while still maintaining acceptable performance characteristics. Material testing was performed to first determine the most appropriate materials as well as the theoretical sensitivity and time response of the final sensor. Seebeck coefficient of a thermocouple formed using the combination of EMS CI-1001 silver and EMS CI-5001 nickel ink was measured to be 18.3 ± 0.9 uV/ deg C. Calibrations were then performed on a sample of sensors produced using the novel manufacturing process to verify theoretical values for both sensitivity and time response. The printed heat flux sensor (PHFS) made using this process has a nominal voltage output sensitivity of 4.10 ± 0.23 mV/(W/cm2) and first order time constant response time of 0.592 ± 0.026 seconds. Lastly, a cost analysis was performed to estimate that the final cost to produce the PHFS is approximately $7.73 per sensor. This cost is significantly lower than commercially available sensors which range from $210 upwards to $3000. / Master of Science
4

Exploratory Eddy Covariance Measurements of Surface Heat and CO2 Fluxes in the Roughness Sublayer of an Urban Environment

Burnett, Benjamin F. 01 January 2010 (has links)
In this study eddy covariance was used to measure sensible heat, latent heat, and carbon dioxide fluxes for the months of August, September, and October of 2009 within the roughness sublayer (RSL) of the urban center of Portland, OR. Vehicle traffic and solar radiation were also measured for the month of October. Flux measurements were compared with measurements from other urban areas as a test of reasonableness. CO₂ fluxes were nearly always positive and were strongly correlated with the weekday diurnal traffic cycle. CO₂ fluxes averaged 6.6 μmol/m^²s, which is less than other published measurements in urban areas. Sensible and latent heat fluxes followed the expected diurnal profile associated with solar radiation. Average sensible heat flux decreased as the season changed from summer to fall, moving from an average of 39 W/m^² in August to 12 W/m^² in October. A corresponding increase in latent heat flux was observed during this period, changing from an average of 10 W/m^² in August to 17 W/m^² in October. Heat flux behavior and amplitude was consistent with other urban measurements, though amplitude varies considerably from city to city. Stationarity was shown to positively influence measured CO₂ fluxes, but to have little effect on measured heat fluxes. Preliminary comparisons of October sensible heat and CO₂ fluxes to an inventory-based estimate of vehicle emissions indicate that eddy covariance measurements underestimate the true fluxes by 50%.
5

Couplage entre ventilation naturelle et stockage-déstockage d'énergie sensible en bâtiment : approche expérimentale et modélisation / On the coupling between natural ventilation and sensible energy charge and discharge in buildings : an experimental and modeling approach

Chen Austin, Miguel 20 September 2018 (has links)
Dans le cadre de la recherche de solutions visant à réduire les consommations d’énergie liées au rafraîchissement des bâtiments, une plateforme d’essais a été mise en place en 2012 à l’I2M et installée sur le site de l’IUT de l’Université de Bordeaux. Cette plateforme est issue d’un prototype de bâtiment BEPos, dénommée Sumbiosi, réalisée par un consortium rassemblé autour du campus de Bordeaux dans le cadre de sa participation à la compétition interuniversitaire du Solar Decathlon Europe 2012. Elle a notamment été conçue de façon à favoriser le stockage passif d’énergie diurne en hiver et le déstockage semi-passif d’énergie nocturne en été. Deux éléments principaux permettent a priori ces fonctions de stockage et déstockage passifs d’énergie : une dalle de forte masse thermique située du côté de la façade Sud vitrée du bâtiment, et des protections solaires et ouvertures pilotables sur les façades Sud, Nord et en lanterneau du bâtiment ; ces dernières assurent les trois principes fondamentaux en ventilation naturelle qui ont lieu grâce aux effets du tirage thermique et de la force du vent. L’objet des travaux menés actuellement ont pour objectif initial d’appréhender qualitativement le stockage-déstockage d’énergie dans la dalle, celle-ci étant soumise à des échanges radiatifs (extérieur et d’intérieur) et convectifs (générés par convection naturelle, forcée ou mixte). Ils visent par la suite à caractériser précisément et quantitativement le couplage entre ce stockage-déstockage, et les circulations d’air et apports radiatifs constatés. La mise en place d’une modélisation, reliant l’ensemble de ces paramètres est envisagée, dans le but d’avancer vers une loi de pilotage de ces éléments mobiles amenant à des conditions de confort internes au bâtiment optimales. Cette dernière doit nous permettre de montrer qu’un choix adéquat de stratégie de ventilation permet une minimisation de consommations électrique en évitant autant que possible le recours à la climatisation. Pour atteindre cet objectif, la démarche scientifique adoptée a consisté à mettre en évidence le rôle de la dalle en béton dans stockage/déstockage d’énergie thermique, sous l’effet de différents scénarii de ventilation naturelle de la plateforme. Cette dalle a été instrumentée, de façon discrète sur l’ensemble de sa surface, en termes de capteurs de flux de chaleur (Peltier et Captec), de températures (thermocouples T), et de la vitesse d’air proche de la dalle. Les premiers résultats, obtenus en période estivale, mettent clairement en évidence le couplage entre les phénomènes de stockage et déstockage d’énergie quotidiens et le cycle météorologique correspondant, ceci pour divers scénarii de pilotage des éléments mobiles de l’enveloppe du bâtiment (persiennes, ouvertures). / As part of the search for solutions to reduce the energy consumption related to the refreshment of buildings, a test platform was set up in 2012 at the I2M and installed on the IUT site of the " University of Bordeaux. This platform is the result of a prototype of a PEHs building called Sumbiosi, carried out by a consortium gathered around the Bordeaux campus as part of its participation in the inter-university competition of the Solar Decathlon Europe 2012. It was conceived in such a way as to favor the passive storage of diurnal energy in winter and the semi-passive destocking of nighttime energy in summer. Two main elements allow a priori these functions of passive storage and retrieval of energy: a slab of high thermal mass located on the side of the glazed south facade of the building, and solar protections and openings controllable on the facades South, North and skylight of the building ; the latter provide the three fundamental principles of natural ventilation, which take place through the effects of thermal draft and wind force. The object of the work currently carried out has the initial objective of qualitatively understanding the storage and de-stocking of energy in the slab, the latter being subjected to radiative (external and internal) and convective exchanges (generated by natural convection, forced or mixed). They are intended to characterize precisely and quantitatively the coupling between this storage and release, and the circulations of air and radiative contributions observed. The implementation of a modeling, linking all these parameters is envisaged, with the aim of advancing towards a law controlling these mobile elements leading to optimum internal comfort conditions for building. The latter must enable us to show that an adequate choice of ventilation strategy allows a minimization of electrical consumption by avoiding the use of air conditioning as much as possible. To achieve this objective, the scientific approach adopted consisted in highlighting the role of the concrete slab in the storage / destocking of thermal energy, under the effect of different scenarios of natural ventilation of the platform. This slab was instrumented, discretely over its entire surface, in terms of heat flux sensors (Peltier and Captec), temperatures (T thermocouples), and air speed close to the slab. The first results, obtained during the summer period, clearly show the coupling between the phenomena of daily energy storage and destocking and the corresponding meteorological cycle for various scenarios controlling the moving elements of the building envelope (shutters, openings).

Page generated in 0.1151 seconds