• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 46
  • 20
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • Tagged with
  • 381
  • 381
  • 381
  • 80
  • 70
  • 57
  • 51
  • 51
  • 50
  • 39
  • 34
  • 34
  • 33
  • 29
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Nicotiana tabacum cell death during Ralstonia solanacearum infection : the impact of heat and bacterial virulence

Byth-Illing, Heather-Anne 08 October 2014 (has links)
Ph.D. (Biochemistry) / Please refer to full text to view abstract
122

Small Heat Shock Proteins from Oryza Sativa and Salmonella Enterica

Mani, Nandini January 2014 (has links) (PDF)
Small heat shock proteins (sHSPs) are a ubiquitous family of molecular chaperones that play a vital role in maintaining protein homeostasis in cells. They are the first line of defence against the detrimental effects of cellular stress conditions like fluctuations in temperature, pH, oxidative and osmotic potentials, heavy metal toxicity, drought and anoxia. Many sHSPs are also constitutively expressed during developmental stages of different plant tissues. Members of this family are ATP-independent chaperones, with monomeric masses varying from 12-40 kDa. A characteristic feature of sHSPs is their ability to assemble into large oligomers, ranging from dimers to 48-mers. Under stress conditions, these oligomers dissociate and/or undergo drastic conformational changes to facilitate their binding to misfolded substrate proteins in the cell. This interaction prevents the substrate from aggregating during stress. When physiological conditions are restored, the substrates are transferred to other ATP-dependent heat shock proteins for refolding. Thus sHSPs do not refold their substrates, but instead prevent them from aggregating and maintain them in a „folding-competent‟ state. The clientele of sHSPs includes proteins with a wide range of molecular masses, secondary structures and pIs. This promiscuity has led to sHSPs occupying key positions in the protein quality control network. As molecular chaperones that protect proteins, sHSPs prevent disease. Concomitantly, mutations in sHSPs have also been linked to various human diseases. Till date, high resolution crystal structures are available only for 3 sHSP oligomers. This insufficiency of structural information has hindered our understanding of the mechanism of chaperone function, the link between the oligomeric status and chaperone activity, identification of substrate binding sites and the role of the flexible terminal segments in mediating both the oligomerization and chaperone function. We undertook structural and functional characterization of plant and bacterial sHSPs in order to address some of these questions. Chapter 1 of this thesis gives an overview of the sHSP family, with special emphasis on the oligomeric assemblies of sHSPs of known structures. We highlight what we know about this family through mutational studies, what is as yet unknown, and why it is important to study this family. Chapter 2 describes our efforts at structural and functional characterization of 5 sHSPS in rice, each targeted to a different organelle. We probed the role played by the N-terminal region in mediating oligomer assembly and in the chaperone activity of the protein. Rice sHSPs displayed a wide range of hydrodynamic radii, from 4 nm to 14 nm, suggesting that their oligomeric assemblies are likely to be diverse. In chapter 3, we discuss our attempts at the structural characterization of a bacterial sHSP, Aggregation suppressing protein A, or AgsA from Salmonella enterica. We obtained a high resolution crystal structure of the dimer of the core sHSP domain. We compared this dimer with other known sHSP dimers, reported the deviations that we observed and analysed the structure to account for these differences. We used this dimer structure to successfully obtain solutions for low resolution X-ray diffraction data for oligomers of different truncated constructs of AgsA. We observed that a C-terminal truncated construct formed an octahedral 24¬mer (4.5 Å resolution), whereas a construct truncated at both termini formed a triangular bipyramidal 18-mer (7.7 Å resolution), an assembly hitherto unobserved for any sHSP. A similar 18-mer was obtained when the C-terminal truncated construct was incubated with a dipeptide prior to crystallisation (6.7 Å resolution). The cryo-EM map of the wild type protein (12 Å resolution) could be fitted with a different 18-mer. The low resolution of the data pre-empted an atomic-level description of the interfaces of the assemblies. However, our work highlights the structural plasticity of this protein and probes the sensitivity of the oligomeric assembly to minor differences in construct length.
123

Breeding habitat selection and its consequences in boreal passerines:using the spatial dispersion of predators and heterospecifics as a source of information

Thomson, R. L. (Robert L.) 25 April 2006 (has links)
Abstract Habitat selection decisions are crucial in determining fitness. Research indicates that individuals of many taxa are flexible in habitat selection and gather information prior to decision-making in order to control for environmental unpredictability. For time limited migrant birds, cues provide a quick and reliable information source with which to make habitat selection decisions. In this thesis I investigate habitat selection decisions, and their fitness consequences, of boreal passerines using heterospecifics or predators as cues. In support of the heterospecific attraction hypothesis, plots with augmented resident titmice densities attracted increased migrant densities. The predicted negative effects stemming from competition did not occur even at unnaturally high resident densities. This suggests that in the north it may always be beneficial for migrants to use residents as cues in habitat selection decisions. By manipulating habitat selection, I found that great tits (Parus major) had poorer reproductive success when forced to breed in close proximity to pied flycatcher (Ficedula hypoleuca) compared to when breeding alone. Flycatchers, in contrast, did slightly better when breeding close to tits. These results indirectly suggest that heterospecific attraction may not be a mutually positive species interaction. Indeed, flycatchers seem to parasitize the high quality microhabitat indicated by breeding great tits. I also tested if residents provide a reliable cue relative to predation risk. However, willow tit (P. montanus) nest location appeared random relative to avian predator nests. They do not appear to reliably indicate safe breeding habitats to later arriving migrants. In addition, closer proximity to breeding avian predators had a negative impact on willow tit reproductive output. Later arriving migrants may be in a better position to avoid avian predator nests during habitat selection. Pied flycatchers avoid settling in the immediate vicinity of sparrowhawk (Accipiter nisus) nests. However, nest box occupation, laying dates and initial reproductive investment (clutch size) showed a unimodal relationship with distance to sparrowhawk. A unimodal trend in these measures indicates there may be a trade-off between the costs (increased adult predation risk) and potential benefits (decreased nest predation risk) of settling in proximity to avian predator nests. Spatially predictable predation risk gradients that emanate from predator nests are termed a "predation risk landscape". Furthermore, flycatchers nesting closer to sparrowhawks produced fewer and smaller nestlings than those farther away. In addition, measures of maternal physiological stress (body condition and stress protein levels) had a negative linear relationship with distance to sparrowhawk nest. It appears that increased perceived predation risk near avian predator nests results in stressful and poor conditions for adult passerines, which results in lower reproductive output. This thesis highlights the importance of information gathering prior to making habitat selection decisions in order to optimise territory location relative to heterospecifics or predators. These decisions clearly impact individual fitness.
124

Characterisation of the plasmodium falciparum Hsp40 chaperones and their partnerships with Hsp70

Botha, Melissa January 2009 (has links)
Central to this research, 40 kDa Heat shock proteins (Hsp40s) are known to partner (or cochaperone) 70 kDa Heat shock proteins (Hsp70s), facilitating the selection and transfer of protein substrate to Hsp70 and the stimulation of the protein folding ability of Hsp70. Members of the diverse Hsp70-Hsp40 protein complement of Plasmodium falciparum have been implicated in the cytoprotection of this malaria parasite, and are thought to facilitate the protein folding, assembly and translocation tasks required by the parasite to commandeer the infected human erythrocyte subsequent to invasion. In particular, the parasite has evolved an expanded and specialised 43- member suite of Hsp40 proteins, 19 of which bear an identifiable export motif for secretion into the infected erythrocyte cytoplasm where they potentially interact with human Hsp70. Although type I Hsp40 proteins are representative of typical regulators of Hsp70 activity, only two of these proteins are apparent in the parasite’s Hsp40 complement. These include a characteristic type I Hsp40 termed PfHsp40, and a larger, atypical type I Hsp40 termed Pfj1. Both Hsp40 proteins are predicted to be parasite-resident and are most likely to facilitate the co-chaperone regulation of the highly abundant and stress-inducible Hsp70 homolog, PfHsp70-I. In this work, the co-chaperone functionality of PfHsp40 and Pfj1 was elucidated using in vivo and in vitro assays. Purified recombinant PfHsp40 was shown to stimulate the ATPase activity of PfHsp70-I in in vitro single turnover and steady state ATPase assays, and co-operate with PfHsp70-I in in vitro aggregation suppression assays. In these in vitro assays, heterologous partnerships could be demonstrated between PfHsp70-I and the human Hsp40, Hsj1a, and human Hsp70 and PfHsp40, suggesting a common mode of Hsp70-Hsp40 interaction in the parasite and host organism. The functionality of the signature Hsp40 domain, the Jdomain, of Pfj1 was demonstrated by its ability to replace the equivalent domain of the A. tumefaciens Hsp40, Agt DnaJ, in interactions with the prokaryotic Hsp70, DnaK, in the thermosensitive dnaJ cbpA E. coli OD259 deletion strain. An H33Q mutation introduced into the invariant and crucial HPD tripeptide motif abrogated the functionality of the J-domain in the in vivo complementation system. These findings provide the first evidence for the conservation of the prototypical mode of J-domain based interaction of Hsp40 with Hsp70 in P. falciparum. Immunofluorescence staining revealed the localisation of PfHsp40 to the parasite cytoplasm, and Pfj1 to the parasite cytoplasm and nucleus in cultured intraerythrocytic stage P. falciparum parasites. PfHsp70-I was also shown to localise to the parasite cytoplasm and nucleus in these stages, consistent with the literature. Overall we propose that PfHsp40 and Pfj1 co-localise with and regulate the chaperone activity of PfHsp70-I in P. falciparum. This is the first study to identify and provide evidence for a functional Hsp70-Hsp40 partnership in P. falciparum, and provides a platform for future studies to elucidate the importance of these chaperone partnerships in the establishment and survival of the parasite in the intraerythrocytic-stages of development.
125

Isolation and characterization of genes encoding heat shock protein 70s (hsp 70s) from two species of the coelacanth, Latimeria chalumnae and Latimeria menadoensis

Modisakeng, Keoagile William January 2007 (has links)
The extant coelacanths have a close resemblance to the coelacanth fossil records dating back to 230mya. Like their predecessors, the extant coelacanths inhabit rocky caves at a depth of 100-300m below sea level. In the Comoros, the water temperature at these depths is estimated to fluctuate between 14-20°C. High-level adaptation to these environment and lack of competition are thought to have led to the morphological uniformity and slow change throughout the history of the coelacanths. Under stress conditions, proteins unfold or misfold leading to the formation of aggregates. Molecular chaperones facilitate the correct folding of other proteins so that they can attain a stable tertiary structure. In addition, molecular chaperones aid the refolding of denatured proteins and the degradation of terminally misfolded protein after cellular stress. Heat shock proteins form one of the major classes of molecular chaperones. Here we show that, despite high-level adaptation to a unique habitat and slow change, the genome of the coelacanth encodes the major and highly conserved molecular chaperone, Hsp70. Latimeria menadoensis and Latimeria chalumnae contain intronless hsp70 genes encoding Hsp70 proteins archetypal of known Hsp70s. Based on the coelacanth codon usage, we have shown that bacterial protein expression systems, particularly Escherichia coli, may not be appropriate for the overproduction of coelacanth Hsp70s and coelacanth proteins in general. Also interesting, was the discovery that like the rat Hsc70, the L. menadoensis Hsp70 could not reverse thermal sensitivity in a temperate sensitive E. coli DnaK mutant strain, BB2362. We also report the successful isolation of a 1.2 kb region of L. menadoensis hsp70 upstream regulatory region. This region contain three putative heat shock elements, a TATA- box and two CAAT-boxes. This regulatory region resembled the Xenopus, mouse, and particularly tilapia hsp70 promoters, all of which have been shown to drive the expression of reporter genes in a heat dependent manner. Taken together, this data is the first to strongly suggest an inducible Hsp70-base cytoprotection mechanism in the coelacanth. It further provides basis to formulate testable predictions about the regulation, structure and function of Hsp70s in the living fossil, Latimeria.
126

Characterisation of Trypanosomal Type III and Type IV Hsp40 proteins

Louw, Cassandra Alexandrovna January 2009 (has links)
The heat shock protein-70 (Hsp70) family of molecular chaperones are ubiquitous highly conserved proteins that are critical for the viability of cellular homeostasis. The ATPase activity of Hsp70 proteins is critical to their function as the affinity of a given Hsp70 for non-native substrate is modulated by ATP binding and hydrolysis. When bound to ATP, Hsp70s possess a low affinity for a given substrate protein, while the hydrolysis of ATP to ADP causes a conformational change that results in a high affinity for substrate proteins. The basal ATPase activity of Hsp70s is too low to facilitate their function in vivo, and co-chaperones are essential to modulate the efficient protein folding by Hsp70. Heat shock protein-40 (Hsp40) heat shock proteins are essential for the in vivo function of Hsp70s by stimulating the ATPase activity of these proteins and facilitating transfer of substrates. The Type III class of Hsp40 proteins have not been well characterised due to their poor levels of conservation at the primary sequence level. This is due to the fact that Type III Hsp40s only contain a J-domain and a poorly conserved C-terminal region. The newly identified Type IV class of Hsp40s, contain an abrogated HPD tripeptide motif in the J-domain and have also not been extensively studied. Trypanosoma brucei (T. brucei) is a unicellular flagellated protozoan parasite. It is the causative agent of Human African Trypansomiasis (HAT) which results in thousands of deaths and devastating agricultural losses in many parts of Africa. T. brucei undergoes a complex lifecycle that is characterised by the transition from an insect vector to a mammalian host in markedly different conditions of temperature, pH, nutrient availability and respiratory requirements. It has been proposed that molecular chaperones may enhance the survival of these parasites due to their cytoprotective effect in combating cellular stress. Due to the fact that T. brucei infection is invariably fatal if left untreated, and that no novel treatment regimens have been developed recently, the identification of potential novel drug targets among proteins essential to the parasite’s survival in the host organism is an attractive aspect of T. brucei research. Because Type III Hsp40s are poorly conserved with respect to Hsp40s found in the human host, the identification of any of these proteins found to be essential to T. brucei survival in humans could potentially make attractive novel drug targets. An in depth in silico investigation into the Type III Hsp40 complement as well as partner Hsp70 proteins in T.brucei was performed. T. brucei possesses 65 Hsp40 proteins, of which 47 were classed as Type III and 6 of which were identified as being putative Type IV Hsp40s. A small but significant number (5) of Type III TbHsp40s contained tetratricopeptide (TPR) domains in addition to the J-domain. The J-domains of the Type III TbHsp40 complement were found to be conserved with respect to those of canonical Hsp40 proteins, although the mutation of certain residues that play a key role in Hsp40-Hsp70 interaction was noted. Potential partnerships of these proteins in the parasite was also investigated. The coding regions of three previously uncharacterised TbHsp40s were successfully amplified from T. brucei TREU927 genomic DNA and cloned into an expression vector. Tbj1, a Tcj1 ortholog, was selected for further study and successfully expressed and biochemically characterised. Tbj1 expressed in E. coli was found to be insoluble, but large amounts were recovered with the aid of a denaturing purification followed by refolding elution strategies, and the bulk of the protein recovered was in compact monomeric form as determined by size-exclusion chromatography fast protein liquid chromatography (SEC-FPLC). The addition of Tbj1 to a thermally aggregated substrate resulted in increased levels of aggregation, although Tbj1 was able to assist two Hsp70 proteins in the suppression of aggregation. Tbj1 proved unable to stimulate the ATPase activity of these same Hsp70s, and could not rescue temperature sensitive cells when replacing E.coli DnaJ and CbpA. It was concluded that Tbj1 does not possess independent chaperone activity, but could display Hsp40 co-chaperone properties under certain circumstances. This could allude to a specialised function in the T. brucei parasite. The lack of human orthologues to Tbj1 could result in the attractiveness of this protein as a novel drug target.
127

Molecular characterization of the tetratricopeptide repeat-mediated interactions of murine stress-inducible protein 1 with major heat shock proteins

Odunuga, Odutayo Odutola January 2003 (has links)
Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human heat shock protein 70 (Hsp70)/heat shock protein 90 (Hsp90)-organizing protein (Hop). The two proteins are homologues of the highly conserved stress-inducible protein 1 (STI1) family of co-chaperones. The STI1 proteins interact directly and simultaneously at some stage, with Hsp70 and Hsp90 in the formation of the hetero-multi-chaperone complexes that facilitate the folding of signal transducing kinases and functional maturation of steroid hormone receptors. The interactions of mSTI1 with both Hsp70 and Hsp90 is mediated by a versatile structural protein-protein interaction motif, the tetratricopeptide repeat (TPR). The TPR motif is a degenerate 34-amino acid sequence a-helical structural motif found in a significant number of functionally unrelated proteins. This study was aimed at characterizing the structural and functional determinants in the TPR domains of mSTI1 responsible for binding to and discriminating between Hsp70 and Hsp90. Guided by data from Hop's crystal structures and amino acid sequence alignment analyses, various biochemical techniques were used to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal TPR domain (TPR1) of mSTI1 to bind to the C-terminal EEVD motif of heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. Substitutions in the first TPR motif of Lys⁸ or Asn¹² did not affect binding of mSTI1 to Hsc70, while double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn⁴³ lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys⁸ or Asn¹² reduced but did not abrogate binding. Steady state fluorescence and circular dichroism spectroscopies revealed that the double substitution of Lys⁸ and Asn¹² resulted in perturbations of inter-domain interactions in mSTl1. Together these results suggest that mSTI1-Hsc70 interaction requires a network of electrostatic interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70, but also outside the TPR1 domain. It is proposed that the electrostatic interactions in the first TPR motif collectively made by Lys⁸ and Asn¹² define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. In the first central TPR domain (TPR1A), single substitution of Lys³°¹ was sufficient to abrogate the mSTI1-Hsp90 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, residues predicted by crystallographic data to determine Hsp70 binding specificity were substituted in the TPR1 domain. The modified protein had reduced binding to Hsc70, but showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on the TPR2A domain. These data suggest that binding of Hsc70 to the TPR1 domain is more specific than binding of Hsp90 to the TPR2A domain. In addition, residues C-terminal of helix A in the second TPR motif of mSTI1 were shown to be important in determining specific binding to Hsc70. Binding assays using surface plasmon resonance spectroscopy showed that the affinities of binding of mSTI1 to Hsc70 and Hsp90 were 2 μM and 1.5 μM respectively. Preliminary in vivo studies revealed differences in the dynamics of binding of endogenous and exogenous recombinant mSTI1 with Hsc70 and Hsp90. The outcome of this study poses serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in the cell.
128

The role of Hsp90/Hsp70 organising protein (Hop) in the Proliferation, Survival and Migration of Breast Cancer Cells.

Willmer, Tarryn January 2012 (has links)
Hop (the Hsp90/Hsp70 organising protein) is a co-chaperone that acts as an adapter between the major molecular chaperones Hsp90 and Hsp70 during the cellular assembly of the Hsp90 complex. The Hsp90 complex regulates the stability and conformational maturation of a range of important cellular proteins, many of which are deregulated in cancer. In this study, we hypothesised that Hop knockdown inhibits proliferation and migration of cancer cells. We characterised the expression of Hop in cell models of different cancerous status, and provided evidence that Hop was upregulated in tumour cells compared to normal cell counterparts. Using an RNA interference approach, a 60-90% knockdown of Hop was achieved for up to 144 hours in the MDA-MB-231 and Hs578T breast cancer cell lines. Hop knockdown resulted in downregulation of the Hsp90 client proteins, Akt and Stat3, as well as a change in the expression of other Hsp90 co-chaperones, p23, Cdc37 and Aha1, while no change in the levels of Hsp90 or Hsp70 was observed. Silencing of Hop impaired cell proliferation in Hs578T cells but an increase in proliferation in MDA-MB-231, suggesting that the role of Hop in cancer cell proliferation was dependent on type of cancer cell. Hop knockdown in Hs578T and MDA-MB- 231 cells did not lead to any significant changes in the half maximal inhibitory concentrations (IC50) of selected small molecule inhibitors (paclitaxel, geldanamycin and novobiocin) in these cell lines after 72 hours. Hop knockdown cells were however, more sensitive than control cells to the Hsp90 inhibitors geldanamycin and novobiocin at earlier time points and in the presence of the drug transporter inhibitor, verapamil. Hop knockdown caused a decrease in cell migration as measured by the wound healing assay in both Hs578T and MDA-MB-231 cells. Hop was present in purified pseudopodia fractions of migrating cells, and immunofluorescence analysis showed that Hop colocalised with actin at the leading edges of pseudopodia, points of adhesion and at intercellular junctions of cells that have been stimulated to migrate with the chemokine stromal derived factor-1. Hop was able to bind to actin in vitro using actin cosedimentation assays, and silencing of Hop dramatically reduced the capacity of Hs578T cells to form pseudopodia. These results establish a correlation between Hop and actin dynamics, pseudopodia formation and migration in the context of Hop silencing, and collectively suggest that Hop plays a role in cancer cell migration. This study presents experimental evidence for a promising alternative to targeting Hsp90 and Hsp70 chaperones, a novel drug target in cancer therapy.
129

The role of Hsp90 in the Wnt pathway of MCF7 breast cancer cells

Cooper, Leanne Claire January 2011 (has links)
Breast cancer is one of the most common forms of cancer in not only South African women, but women all over the world. The molecular chaperone heat shock protein 90 (HSP90) is upregulated in cancer and is almost exclusively associated with proteins involved in intracellular signal transduction, thus it plays an important role in signalling pathways within the cell. In cancer, there is an aberrant activation of the Wnt signaling pathway, which results in stabilized β-catenin being able to translocate to the nucleus where it can trigger the transcription of oncogenes found to be involved in the self-renewal of cells. The level of β-catenin is usually kept in check by a destruction complex comprising glycogen synthase kinase 3-beta (GSK-3β), axin1, adenomatous polyposis coli (APC) which phosphorylate β-catenin, resulting in its ubiquitination and degradation. HSP90 has been found to be associated with GSK-3β, but whether this association is only transient is debatable. Very little is known about the association of HSP90 with other members of the Wnt pathway in breast cancer. In this study, we have attempted to further identify the direct associations between HSP90 and GSK-3β, β-catenin, p-β-catenin and axin1. Immunofluorescence and confocal microscopy co-localization studies suggested a potential association between HSP90 and these proteins. Treatment with HSP90 inhibitors, 17-AAG and novobiocin resulted in a shift of axin1 to what appeared to be the plasma membrane. The associations of HSP90 with GSK-3β, β-catenin, p-β-catenin and axin1 were confirmed biochemically by co-immunoprecipitation and inhibition using 17-AAG, geldanamycin and novobiocin. We showed, for the first time that HSP90 is associated in a possible complex with β-catenin, p-β-catenin and axin1 therefore is potentially involved in the modulation of p-β-catenin in the Wnt pathway through the stabilization of the destruction complex.
130

The characterisation of trypanosomal type 1 DnaJ-like proteins

Ludewig, Michael Hans January 2010 (has links)
Trypanosomes are protozoans, of which many are parasitic, and possess complex lifecycles which alternate between mammalian and arthropod hosts. As is the case with most organisms, molecular chaperones and heat shock proteins are encoded within the genomes of these protozoans. These proteins are an integral part of maintaining the structural integrity of proteins during normal and stress conditions. Heat shock protein 40 (Hsp40) is a co-chaperone of heat shock protein 70 (Hsp70) and in some cases can act as a chaperone. These proteins work together to bind non-native polypeptide structures to prevent unfolded protein aggregrate formation in times of stress, translocate proteins across organelle membranes, and transport unsalvageable proteins to proteolytic degradation by the cellular proteasome. Hsp40s are divided into four types based on their domain structure. Analysis of the nuclear genomes of eight trypanosomatid species revealed that less than 10 of the approximate 70 Hsp40 sequences per genome were Type 1 Hsp40s, many of which contained putative orthologues in the other seven trypanosomatid genomes. One of these Type 1 Hsp40s from T b. brucei, Trypanosoma brucei DnaJ 2 (Tbj2), was functionally characterised in T brucei brucei. RNA interference knockdown of expression in T brucei brucei showed that cells deficient in Tbj2 displayed a severe inhibition of the growth of the cell population. The levels of the Tbj2 protein population in T brucei brucei cells increases after exposure to 42°c and the protein was found to have a generalized cytoplasmic subcellular localization at 37°c. These findings provide evidence that Tbj2 is an orthologue of Yeast DnaJ 1 (Y dj l), an essential S. cerevisiae protein. Hsp40s interact with their partner Hsp70s through their J-domain. The amino acids of the J-domain important for a functional interaction with Hsp70 were examined in Trypanosoma cruzi DnaJ 2 (Tcj2) (the orthologue of Tbj2) and T cruzi DnaJ protein 3 (Tcj3) by testing their ability to substitute for Y dj l in Saccharomyces cerevisae and for DnaJ in Escherichia coli. In both systems, the positively charged amino acids of Helix II and III of the J-domain disrupted the functional interaction of these Hsp40s with their partner Hsp70s. Substitutions in Helix I and IV of the J-domains of Tcj2 and Tcj3 produced varied results in the two different systems, possibly suggesting that these helices serve to define with which Hsp70s a given Hsp40 can interact. The inability of an Hsp40 and an Hsp70 to interact functionally does not necessarily mean a total absence of physical interaction between these proteins. The amino acid substitution of the histidine in the HPD motif (H34Q) of the J-domain of Tcj2 and Tcj3 removed the ability of these proteins to interact functionally with S. cerevisiae Hsp70 (Ssal) in vivo. However, preliminary binding studies using the quartz crystal microbalance with dissipation monitoring (QCM-D) show that Tcj2 and Tcj2(H34Q) both physically interact with M sativa Hsp70 in vitro. This study is the first report to provide evidence that certain trypanosoma! Type 1 Hsp40s are essential proteins. Futhermore, the interaction of these Hsp40s with Hsp70 identified important features of the functional interface of this chaperone machinery.

Page generated in 0.128 seconds