Spelling suggestions: "subject:"heat links"" "subject:"heat banks""
31 |
Fabrication and characterization of nanostructured surfaces for enhanced heat transfer /Choi, Changho. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 69-73). Also available on the World Wide Web.
|
32 |
Single-phase liquid flow and heat transfer in plain and enhanced silicon microchannels /Steinke, Mark E. January 2005 (has links)
Thesis (Ph.D.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (leaves 179-189).
|
33 |
Experimental study of flow boiling heat transfer and critical heat flux in microchannels /Kuan, Wai Keat. January 2006 (has links)
Thesis (Ph.D.)--Rochester Institute of Technology, 2006. / Typescript. Includes bibliographical references (leaves 270-275).
|
34 |
The development of a new compact model for prediction of forced flow behaviour in longitudinal fin heat sinks with tip bypassCoetzer, C.B. 12 July 2006 (has links)
Increasing power dissipation and chip densities in the rapidly evolving electronics cooling industry are causing an ever increasing need for the tools and methods necessary for electronic systems design and optimisation. Modern electronic systems have the capacity to produce significant amounts of heat which, if not removed efficiently, could lead to component failure. The most common technique of heat removal is by making use of a heat spreader, or so¬-called heat sink. These devices are excellent heat conductors with a large surface area to volume ratio, and cooled through either natural or forced convection. Despite the advantages of these devices, there are serious consequences involved in the application of heat sinks. The required size of a heat sink may limit the miniaturisation of a product, while inadequate design, due to a lack of understanding of the flow physics, may lead to premature component failure. It is therefore crucial that an optimal heat sink design is achieved for every particular application. In the past, both heat sink design and optimisation have occurred mostly through experimental characterisation of heat sinks, which was not always particularly successful or accurate. Recent rapid developments in computer technology have led to the availability of various computational fluid dynamics or CFD software packages, with the capability of solving the discretized form of the conservation equations for• mass, momentum, and energy to provide a solution of the flow and heat fields in the domain of interest. This method of using the fundamental flow physics is currently the most complete way to determine the solution to the heat sink design and optimisation problem. It does unfortunately have the drawback of being computationally expensive and excessively time consuming, with commercial software prices being financially restrictive to the average designer. The electronics cooling community has subsequently identified the need for so-called "compact models" to assist in the design of electronic enclosures. Compact models use available empirical relations to solve the flow field around a typical heat sink. Current models require significantly less computational power and time compared to CFD analysis, but have the drawback of reduced accuracy over a wide range of heat sink geometries and Reynolds numbers. This is one of the reasons that compact modelling of heat sinks remain an international research topic today. This study has focused on the CFD modelling of a variety of forced flow longitudinal fin heat sinks with tip clearance. Tip clearance allows the flow to bypass the heat sink and downgrade its thermal performance. The flow bypass phenomenon, general flow behaviour, and pressure loss characteristics were investigated in detail. Thermal modelling of the heat sinks was left for future study. The flow information provided by the CFD analysis was combined with data available from literature to develop an improved compact flow model for use in a variety of practical longitudinal fin heat sinks. The new compact model leads to a 4.6 % improvement in accuracy compared to another leading compact model in the industry, and also provides more localised flow information than was previously available from compact modelling. <p The study therefore contributed significantly towards the general understanding and prediction of forced flow behaviour in longitudinal fin heat sinks with tip bypass, using both CFD analysis and the compact modelling approach. The new improved compact model may now be extended and incorporated together with the relevant flow details from the CFD analysis in a total package, solving for the flow and heat fields of forced flow longitudinal fin heat sinks. The study therefore assists in the global effort of making the confident and accurate use of compact modelling in modem electronic systems design and optimisation a practical reality. / Dissertation (M Eng (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
|
35 |
Stanovení anizotropie tepelné vodivosti polymerních chladičů pro chlazení elektroniky / Determination of thermal conductivity anisotropy of polymeric heatsinks for electronicsBrachna, Róbert January 2021 (has links)
The master's thesis focuses on creating a numerical model of a polymeric heat sink with emphasis on its significant thermal conductivity anisotropy. This anisotropy is caused by highly thermally conductive graphite filler. Its final orientation is given by the melt flow inside the mould cavity during injection molding. The numerical model is created on the basis of a heat sink prototype subjected to experimental measurements, whose physical conditions are reliably replicated by the model. The determination of anisotropy is divided into two parts. The qualitative part is based on the fracture analysis of the heat sink prototype and determines the principal directions of the conductivity tensor in individual sections of the geometry. The computation of principal conductivities falls into the quantitative part, in which this task is formulated as an inverse heat conduction problem. The input data for the proposed task are experimentally obtained temperatures at different places of the geometry. The values of principal conductivities are optimized to minimize the difference between the measured and simulated temperatures.
|
36 |
Thermal and Vibration Characterization of Flexible Heat SinksJanuary 2019 (has links)
abstract: In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
37 |
Numerical Study Of Encapsulated Phase Change Material (epcm) Slurry Flow In MicrochannelsKuravi, Sarada 01 January 2009 (has links)
Heat transfer and flow characteristics of phase change material slurry flow in microchannels with constant heat flux at the base were investigated. The phase change process was included in the energy equation using the effective specific heat method. A parametric study was conducted numerically by varying the base fluid type, particle concentration, particle size, channel dimensions, inlet temperature, base heat flux and melting range of PCM. The particle distribution inside the microchannels was simulated using the diffusive flux model and its effect on the overall thermal performance of microchannels was investigated. Experimental investigation was conducted in microchannels of 101 [micro]m width and 533 [micro]m height with water as base fluid and n-Octadecane as PCM to validate the key conclusions of the numerical model. Since the flow is not fully developed in case of microchannels (specifically manifold microchannels, which are the key focus of the present study), thermal performance is not as obtained in conventional channels where the length of the channel is large (compared to length of microchannels). It was found that the thermal conductivity of the base fluid plays an important role in determining the thermal performance of slurry. The effect of particle distribution can be neglected in the numerical model under some cases. The performance of slurry depends on the heat flux, purity of PCM, inlet temperature of the fluid, and base fluid thermal conductivity. Hence, there is an application dependent optimum condition of these parameters that is required to obtain the maximum thermal performance of PCM slurry flows in microchannels.
|
38 |
Thermo-Hydraulic Performance of Partially Blocked Metal-Foam ChannelsSonavane, Prasad Deepak 31 January 2023 (has links)
Exponential growth of heat flux densities in commercial and industrial electronics, and compact heat exchangers demand surfaces and heat sinks with high dissipation rate capabilities. Among different technologies proposed to meet these demands, high-porosity metal foams have attracted the attention of many investigators due to their higher surface area densities as well as higher thermal performance due to the turbulence and tortuosity generated in the flow due to their structure. One of the disadvantages of such metal foams, however, is the attendant higher pressure drop or pumping power penalty.
This thesis was undertaken to investigate whether channels partially filled with metal foams can reduce the required pumping power with a minimal loss in thermal performance. The thermo-hydraulic (T-H) performance factor J/F<sup>1/3, where J is the Colburn-J factor and F is the friction factor, was used to compare the relative performance of foams for various values of blocking fractions (B), where B is defined as the ratio of the height of the foam to the height of the channel.
The metal foam samples considered were 10 PPI (pores per inch) 6101-T6 Aluminum, with porosity of ∼ 94 − 96%, and B of 1/6, 1/3, 2/3, 5/6, and 1. Each of these samples was attached to an aluminum slab embedded in one of the walls, which had a patch heater that acted as a heat source. A modification was made to all B < 1 configurations by attaching an aluminum plate on top, which then separated the foam-free and the foam-filled flows completely. These configurations are denoted by a 'P' in their names (e.g. B = 1/3P is the plated modification of B = 1/3). Experiments were conducted in an in-house designed wind tunnel, with a test section of 45" in length and a cross-section of 3"X3". Reynolds number (based on channel hydraulic diameter and inlet velocity) was varied from 1,000 to 15,000 to capture the flow domains from laminar to turbulent.
The data obtained for the three scenarios namely - 1. Controlled-Flow Scenario 2. Pumping Power Variation with Temperature Difference, and 3. Fan-Based System were analyzed for their thermo-hydraulic performance. The extreme low blocking fractions are evaluated and compared against the dimpled/protruded surfaces, and were found to give superior performance, hence displaying potential as good turbulators. The plated configurations were found to perform better in almost all scenarios when compared to their non-plated counterparts. Furthermore, a new simplified analytical model is introduced that considers the flow in the partially-blocked region as two separate 'parallel' flows, one in the foam-free region and the other in the foam-filled region. The comparison between this novel approach and the analytical solution from the literature shows good agreement, suggesting that this simplified model may be appropriate. This model is then used for determining the foam-filled region flow ratios for the performed experiments, and a correlation is presented. / Master of Science / Portable devices, such as laptops, and mobile phones are trending towards miniaturization and simultaneously becoming more power-hungry, leading to ever-increasing heat flux densities. Growing energy and technology demands require high thermal dissipation rates to be achieved in equipment such as industrial and commercial electronics, data centers, heat exchangers in automobiles, and power plants - both renewable and non-renewable. One of the best ways to enhance convective heat transfer is by increasing the heat transfer surface area. This is traditionally done using fins. A much higher surface area can be achieved using a metal foam instead, along with improving the turbulent mixing of the fluid. The flow through the metal foam, however, faces a higher pressure drop penalty which is one of the major reasons for a continued preference for fins.
In this experimental study, we aim at minimizing this pressure drop penalty of a metal-foam heat-sink along with maintaining a respectable heat transfer performance through 'partial-blocking' (filling) of the channel, where the height of the foam is lower than the total channel height. The ratio of metal foam height to the channel height is named as blocking fraction B. A general comparison of the hydraulic, thermal, and thermo-hydraulic (T-H) performance reveals that the ∼ 83.3% plated configuration is capable of superseding the baseline of full blockage. The 'plating' here denotes a slight modification - a solid plate rests on top of the metal foam, separating the foam-free and foam-filled flow. For applications with Re > 10000, ∼ 33.3% plated configuration is highly recommended. For fan-based systems, ∼ 83.3% plated, ∼ 33.3% plated, and 33.3% non-plated configurations emerge as possible alternatives to the fully-blocked case. Furthermore, while considering partial configurations, it is shown that one should go for lower PPI metal foams to improve the flow ratio inside the metal foam. For pressure-drop critical equipment, ∼ 16.7% configuration is found to perform better than the conventional double-protruded walls and other turbulence-enhancing surface treatments. Finally, this thesis presents a novel and simplified approach for estimating the flow ratios for partially-blocked channels using scaling analysis.
|
39 |
Experimental Evaluation of an Additively Manufactured Straight Mini-Channel Heat Sink for Electronics CoolingEidi, Ali Fadhil 23 March 2021 (has links)
The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use liquids for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume. Mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and it is experimentally evaluated. The hydraulic performance of the heat sink is tested over a range of Reynolds numbers (150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and a range of Reynolds numbers (150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements. / Master of Science / The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use water instead of air for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume due to the small channels. Mini/microchannels are distinguished from conventional channels by the hydraulic diameter, where they range from $10mu m$ to $2mm$. M/MCHS are typically manufactured from a highly conductive metals with the channels fabricated on the surface. However, mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. Complex features like curves or internall channels are difficult or even impossible to manufacture. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. Binder jetting possess unique advantageous as it uses precise control of a liquid binder applied to a bed of fine powder to create complex geometries Furthermore, it does not require extreme heating during the fabrication process. The advantages of binder jetting include that it is low cost, high speed, can be applied to a variety of materials, and the ability to scale easily in size. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and this heat sink is experimentally evaluated. The hydraulic performance of the heat sink is tested over different water flow rates (Reynolds numbers between 150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The surface roughness effect should be considered in future designs of additively manufactured minichannels. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and different water flow conditions (Reynolds numbers 150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. However, a mismatch between the experimental data and the correlation requires further investigation. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements.
|
40 |
Numerical Investigation Of Natural Convection From Plate Finned Heat SinksMehrtash, Mehdi 01 September 2011 (has links) (PDF)
Finned heat sink use for electronics cooling via natural convection is numerically investigated. An experimental study from the literature that is for vertical surfaces is taken as the base case and the experimental setup is numerically modeled using commercial CFD software. The flow and temperature fields are resolved. A scale analysis is applied to produce an order-of-magnitude estimate for maximum convection heat transfer corresponding to the optimum fin spacing. By showing a good agreement of the results with the experimental data, the model is verified. Then the model is used for heat transfer from inclined surfaces. After a large number of simulations for various forward and backward angles between 0-90 degrees, the dependence of heat transfer to the angle and Rayleigh number is investigated. It is observed that the contributions of radiation and natural convection changes with the angle considerably. Results are also verified by comparing them with experimental results available in literature.
|
Page generated in 0.0738 seconds