• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compactness of Isoresonant Potentials

Wolf, Robert G. 01 January 2017 (has links)
Bruning considered sets of isospectral Schrodinger operators with smooth real potentials on a compact manifold of dimension three. He showed the set of potentials associated to an isospectral set is compact in the topology of smooth functions by relating the spectrum to the trace of the heat semi-group. Similarly, we can consider the resonances of Schrodinger operators with real valued potentials on Euclidean space of whose support lies inside a ball of fixed radius that generate the same resonances as some fixed Schrodinger operator, an ``isoresonant" set of potentials. This isoresonant set of potentials is also compact in the topology of smooth functions for dimensions one and three. The basis of the result stems from the relation of a regularized wave trace to the resonances via the Poisson formula (also known as the Melrose trace formula). The second link is the small-t asymptotic expansion of the regularized wave trace whose coefficients are integrals of the potential function and its derivatives. For an isoresonant set these coefficients are equal due to the Poisson formula. The equivalence of coefficients allows us to uniformly bound the potential functions and their derivatives with respect to the isoresonant set. Finally, taking a sequence of functions in the isoresonant set we use the uniform bounds to construct a convergent subsequence using the Arzela-Ascoli theorem.
2

On the spectral geometry of manifolds with conic singularities

Suleymanova, Asilya 29 September 2017 (has links)
Wir beginnen mit der Herleitung der asymptotischen Entwicklung der Spur des Wärmeleitungskernes, $\tr e^{-t\Delta}$, für $t\to0+$, wobei $\Delta$ der Laplace-Beltrami-Operator auf einer Mannigfaltigkeit mit Kegel-Singularitäten ist; dabei folgen wir der Arbeit von Brüning und Seeley. Dann untersuchen wir, wie die Koeffizienten der Entwicklung mit der Geometrie der Mannigfaltigkeit zusammenhängen, insbesondere fragen wir, ob die (mögliche) Singularität der Mannigfaltigkeit aus den Koeffizienten - und damit aus dem Spektrum des Laplace-Beltrami-Operators - abgelesen werden kann. In wurde gezeigt, dass im zweidimensionalen Fall ein logarithmischer Term und ein nicht lokaler Term im konstanten Glied genau dann verschwinden, wenn die Kegelbasis ein Kreis der Länge $2\pi$ ist, die Mannigfaltigkeit also geschlossen ist. Dann untersuchen wir wir höhere Dimensionen. Im vier-dimensionalen Fall zeigen wir, dass der logarithmische Term genau dann verschwindet, wenn die Kegelbasis eine sphärische Raumform ist. Wir vermuten, dass das Verschwinden eines nicht lokalen Beitrags zum konstanten Term äquivalent ist dazu, dass die Kegelbasis die runde Sphäre ist; das kann aber bisher nur im zyklischen Fall gezeigt werden. Für geraddimensionale Mannigfaltigkeiten höherer Dimension und mit Kegelbasis von konstanter Krümmung zeigen wir weiter, dass der logarithmische Term ein Polynom in der Krümmung ist, das Wurzeln ungleich 1 haben kann, so dass erst das Verschwinden von mehreren Termen - die derzeit noch nicht explizit behandelt werden können - die Geschlossenheit der Mannigfaltigkeit zur Folge haben könnte. / We derive a detailed asymptotic expansion of the heat trace for the Laplace-Beltrami operator on functions on manifolds with one conic singularity, using the Singular Asymptotics Lemma of Jochen Bruening and Robert T. Seeley. Then we investigate how the terms in the expansion reflect the geometry of the manifold. Since the general expansion contains a logarithmic term, its vanishing is a necessary condition for smoothness of the manifold. It is shown in the paper by Bruening and Seeley that in the two-dimensional case this implies that the constant term of the expansion contains a non-local term that determines the length of the (circular) cross section and vanishes precisely if this length equals $2\pi$, that is, in the smooth case. We proceed to the study of higher dimensions. In the four-dimensional case, the logarithmic term in the expansion vanishes precisely when the cross section is a spherical space form, and we expect that the vanishing of a further singular term will imply again smoothness, but this is not yet clear beyond the case of cyclic space forms. In higher dimensions the situation is naturally more difficult. We illustrate this in the case of cross sections with constant curvature. Then the logarithmic term becomes a polynomial in the curvature with roots that are different from 1, which necessitates more vanishing of other terms, not isolated so far.

Page generated in 0.0822 seconds