1 |
Comparison of turbulence model predictions in rod bundles with supercritical up-flowBergmann, Cale January 2016 (has links)
Vertical up-flow of supercritical fluid in the subchannel of a heated rod bundle was numerically simulated using the Computational Fluid Dynamics (CFD) codes ANSYS CFX and ANSYS FLUENT. A total of seven cases from three different sets of experiments were simulated. Three-dimensional steady-state predictions of fluid velocity, pressure, and temperature were made using five versions of two-equation RANS turbulence models with accompanying wall treatments. In addition, the temperature distribution in a solid region comprising a heater and sheathing was also computed in some cases.
The k-epsilon turbulence model, implemented using CFX and scalable wall functions, provided the numerical results that have the smallest overall deviation from experimental results for three of the seven cases, and predicts the experimental data of the remaining four cases reasonably well, unlike other turbulence models that severely over-predict the experimental data for wall surface temperature. / February 2016
|
2 |
Flow Obstruction Effects on Heat Transfer in Channels at Supercritical and High Subcritical PressuresEter, Ahmad January 2016 (has links)
The objective of this thesis research is to improve our understanding of the flow obstacle effect on heat transfer at supercritical and high subcritical pressures by experimentally studying the effect of different obstacles on heat transfer in two vertical upward-flow test sections: a 3-rod bundle and an 8 mm ID tube. The heat transfer measurements cover the region of interest of the Canadian Super-critical Water Cooled Reactor (SCWR). A thorough analysis of the obstacle effect on supercritical heat transfer (SCHT) was performed. In the 3-rod bundle, two types of obstacles were employed: wire wraps and low-impact grid spacers. Wire wraps were found to be more effective than grid spacers to enhance the SCHT. In the tubular test section, obstacles appeared to suppress the heat transfer deterioration (HTD) or decrease its severity; obstacles also generally enhanced the SCHT both in the liquid-like and the gas- like region. The experiment in the tubular test section revealed that, at certain flow conditions (low mass flux, low inlet subcooling), flow obstacles can have an adverse impact on the SCHT. A criterion to predict the onset of this adverse effect was developed. At high subcritical pressures, obstacles increased the CHF and reduced the maximum post-CHF temperature. A comparison of the experimental data with prediction methods for the SCHT, single phase heat transfer, CHF and post-dryout heat transfer was performed. Lastly, a new correlation to predict the enhancement in SCHT due to obstacles was developed for heat transfer in the liquid-like and gas-like regions.
|
3 |
Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet FuelsJiang, Hua 12 May 2011 (has links)
No description available.
|
Page generated in 0.1815 seconds