• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an algorithm for the automatic adjustment of the heating curve of a heat pump heating system

Andricciola, Antonio January 2018 (has links)
This work deals with the problem of choosing the correct heating curve for a certain building package (envelope plus distribution system). This topic is particularly relevant in countries like Sweden where heating curve is the most common way to control heat pumps. The analysis, involving four building models with respective distribution systems (two have floor heating and two radiators) and a variable speed GSHP, shows how, for a fixed location, the proper heating curve changes considering different building envelopes and different emitters. It is highlighted, therefore, how the adoption of a generic heating curve for all the buildings can cause discomfort and energy inefficiency. An algorithm to adjust the curve is then presented, and the results are compared with the reference case. The algorithm manages to improve comfort considerably and, for the A-class building, also SPF increases a lot (12.5%). The whole study was performed by means of TRNSYS® neglecting the DHW demand. / EffSys Expand P18: Smart Control Strategies for Heat Pump Systems
2

Estimation of Complex Permittivity of Silicon at 2.45 GHz Microwave Frequency

January 2014 (has links)
abstract: Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the central conductor sheathed in dielectric material, which is As-doped silicon in this case, are analyzed. Electrical and magnetic field equations governing the wave propagation in this setup are formulated by applying the necessary boundary conditions. Input admittance is computed using the fields in the device and reflection coefficient is calculated at the input. This analytical solution is matched to the reflection coefficient acquired by experiments conducted, using VNA as the input source. The contemplation is backed by simulation using High Frequency Structural Simulator, HFSS. Susceptor-assisted microwave heating has been shown to be a faster and easier method of annealing arsenic-doped silicon samples. In that study, it was noticed that the microwave power absorbed by the sample can directly be linked to the heat power required for the annealing process. It probes the validity of the statement that for arsenic-doped silicon the heating curve depends only on its sheet properties and not on the bulk as such and the results presented here gives more insight to it as to why this assumption is true. The results obtained here can be accepted as accurate since it is known that this material is highly conductive and electromagnetic waves do not penetrate in to the material beyond a certain depth, which is given by the skin depth of the material. Hall measurements and four-point-probe measurements are performed on the material in support of the above contemplation. / Dissertation/Thesis / M.S. Electrical Engineering 2014
3

Improving building heating efficiency using machine learning : An experimental study

Lindberg, Niklas, Magnusson, Carl January 2021 (has links)
While global efforts are made to reduce the emission of greenhouse gases and move towards a more sustainable society, the global energy demand is continuing to increase. Building energy consumption represents 20-40% of the world's total energy use, and Heating, Ventilation, and Air Conditioning (HVAC) answer for around 50% of this amount. Only a small share of the European Union's building stock is considered to be energy efficient, and many of these buildings will continue to operate until the year 2050 and on-wards. The main objective of this thesis was to benchmark the economic and environmental implications of increasing building heating efficiency. To answer the framed research questions, an experimental study was carried out. In the study, a machine learning based solution was constructed and then implemented in a multi-tenant building for 24 days. Using an Artificial Neural Network a new heating curve was predicted, based on historical data from the building. The post-experimental data was then analyzed using STATA as statistical software tool. The results show that the new heating curve was able to reduce the heating system supply temperature by 1.9°C, with a decrease in average indoor temperature of 0.097°C. The decrease in supply temperature resulted in a reduction of energy expenditure by approximately 10%. Using the new building specific heating curve, yearly cost reductions of almost 11,700SEK could be achieved. Furthermore, the increased efficiency was able to reduce CO2 emissions by 127,5kg yearly. This results helps shed light on the general weaknesses in building heating systems out there today, and shows that there is great potential of reducing building energy consumption in cost effective ways. Although the implemented solution might not be generally applicable for all building owners out there, it should act as an eye opener for building owners and help motivate them into assessing their building operation and start looking into new technologies. Moreover, the study provides legible incentives for both building owners and the society to further work together towards a more efficient and sustainable society.
4

Optimalizace provozu otopné soustavy po její rekonstrukci / Optimization of the heating system operation after reconstruction

Komínek, Petr January 2014 (has links)
This master's thesis analyzes optimization of operation of the heating system after its reconstruction. For application of this theme was chosen school building in the complex of SOU and SOŠ Bosonohy. This work first analyze the object where is described the character of the building and as next examination of the building cloak by using infrared thermography and finally evaluation of the energy performance of the building before and after reconstruction using an proof of energy building performance. The aim of this work is optimization of the heating system. This topic is dealing with optimal settings heating curve for equithermic regulation and next the optimization of heating operation.
5

Betongfyllda HSQ-balkar : Ett alternativ till traditionellt brandskydd / Concrete filled HSQ-beams : An alternative to traditional fire protection

Samuelsson, Alexander, Gårdefors, Peter January 2018 (has links)
Den brandskyddsmetod av bjälklagsbalkar som används mest idag är brandskyddsfärg och brandskyddsskivor. Dessa metoder kräver ett extra arbetsmoment efter att balken är monterad. Genom att fylla balken med betong samtidigt som hålbjälklagskarvarna fylls och på så sätt integrera brandskyddet i balken kan ett extra arbetsmoment undvikas. Byggnadstekniska Byrån har märkt ett intresse från beställare att i ett tidigt skede få in brandskyddet i projekteringen.  Målet är att undersöka om betong, ingjuten i en HSQ-balk kan få balken att uppfylla de brandskyddskrav som idag ställs enligt Boverkets byggregler. Målet är även att ta reda på om det är kostnadseffektivt jämfört med brandskyddsfärg.  Referensobjektet som används är en skola på tre våningar och balken som undersöks är den som tar upp de största lasterna i projektet. Balken ska enligt Boverkets byggregler klara av en standardbrand i 60 min. Temperaturanalysen av balktvärsnitten har gjorts i Ansys Aim 18.2 och dimensioneringsmetoder av balken sker enligt Eurokoder.  Balken som idag finns på plats skulle inte i oskyddat tillstånd klara av en standardbrand i 60min. De utförda beräkningarna visar att balken i samverkan med betong och armering i tvärsnittet skulle klara momenten och tvärkrafterna i referensobjektet. Fenomen så som spjälkning av betong, dess inverkan på betongens hållfasthet samt armeringens vidhäftning har inte kunnat tas i beaktning. Därför rekommenderas att balkens underfläns dimensioneras upp från 20mm till 30mm och enbart betraktar den ingjutna betongen som kylande medium.

Page generated in 0.0777 seconds