1 |
A Volume of Fluid (VoF) based all-mach HLLC Solver for Multi-Phase Compressible Flow with Surface-TensionOomar, Muhammad Yusufali 15 September 2021 (has links)
This work presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens, Lax, Leer and Contact (HLLC) approximate Riemann solver based on Garrick et al. [1] is developed and combined with the popular Volume of Fluid (VoF) method: Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid-gas interface tracking characteristics. To ensure compatibility with VoF, the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) [2] is applied to non-conservative (primitive) variables, which yields both robustness and accuracy. Liquid-gas interface curvature is computed via both height functions [3, 4] and the convolution method [5]. This is in the interest of applicability to both cartesian and arbitrary meshes. The author emphasizes the use of VoF in the interest of surface tension modelling accuracy. The method is validated using a range of test-cases available in literature. The results show flow features that are in agreement with experimental and benchmark data. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy (up to secondorder).
|
2 |
Ample canonical heights for endomorphisms on projective varieties / 射影多様体上の自己射に対する豊富標準高さ関数Shibata, Takahiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21533号 / 理博第4440号 / 新制||理||1638(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 並河 良典, 教授 森脇 淳, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
3 |
Genericity on Submanifolds and Equidistribution of Polynomial Trajectories on Homogeneous SpacesZhang, Han January 2021 (has links)
No description available.
|
4 |
Model Theory of Fields and Heights / La théorie des modèles des corps et des hauteursGöral, Haydar 03 July 2015 (has links)
Dans cette thèse, nous traitons la théorie des modèles de corps algébriquement clos étendu par prédicats pour désigner soit des éléments de hauteur bornée, soit des sous-groupes multiplicatifs satisfaisant une condition diophantienne. Les questions que nous considérons appartiennent au domaine de la théorie de la stabilité. Tout d'abord, nous examinons un corps algébriquement clos avec un sous-groupe multiplicatif distingué qui satisfait la propriété Mann. Ainsi, nous caractérisons l'indépendance qui nous permet de caractériser les groupes définissables et les groupes interprétables dans la paire. Ensuite, nous étudions les corps algébriquement clos étendu par un sous-corps propre algébriquement clos et un sous- groupe multiplicatif. Nous caractérisons les groupes définissables et interprétables dans cette triple. Nous considérons aussi l'ensemble des nombres algébriques avec des éléments de petite hauteur et nous montrons que cette théorie n'est pas simple et a la propriété d'indépendance. Puis, nous nous rapportons à la simplicité d'une certaine paire avec la conjecture de Lehmer. Enfin, nous appliquons l'analyse non standard pour prouver l'existence de certaines bornes de hauteur de la complexité des coefficients de certains polynômes. Cela nous permet de caractériser l'appartenance idéale d'un polynôme donné. De plus, nous obtenons une borne pour la fonction de la hauteur logarithmique, ce qui nous permet de tester la primalité d'un idéal / In this thesis, we deal with the model theory of algebraically closed fields expanded by predicates to denote either elements of small height or multiplicative subgroups satisfying a Diophantine condition. The questions we consider belong to the area of stability theory. First, we investigate an algebraically closed field with a distinguished multiplicative subgroup satisfying the Mann property. We characterize the independence which enables us to characterize definable and interpretable groups in the pair. Then we study the model theory of algebraically closed fields expanded by a proper algebraically closed subfield and a multiplicative subgroup. We characterize definable and interpretable groups in this triple. We also consider the set of algebraic numbers with elements of small height and we show that this theory is not simple and has the independence property. We then relate the simplicity of a certain pair with Lehmer’s conjecture. Finally, we apply nonstandard analysis to prove the existence of certain height bounds on the complexity of the coefficients of some polynomials. This allows us to characterize the ideal membership of a given polynomial. Moreover, we obtain a bound for the logarithmic height function, which enables us to test the primality of an ideal
|
5 |
[en] TILINGS OF DISKS WITH HOLES / [pt] COBERTURAS DE DISCOS COM BURACOSPAULA MONTEIRO BAPTISTA 23 October 2006 (has links)
[pt] Coberturas de um disco quadriculado com buracos D são
contados de acordo com volume (na variável formal q) e
fluxo (em p1, p2, ..., pN). Consideramos propriedades
algébricas dos resultados gerados pela função F (p1,
p2, ..., pN, q). Para números fixos p2, ..., pN, q > 0 o
polinômio f(p1) = F(p1, p2, ..., pN, q) tem todas as
raízes reais (e negativas). / [en] Tilings of a quadriculated disk with holes D are counted
according to vol-
ume (in the formal variabel q) and flux (in p1; p2;...
pN). We consider algebraic properties of the resulting generating function D
(p1; p2; ...; pk; q). For
p1; p2; ...; bpi; ...; pn; q > 0 the polynomial f(pi) = D
(p1; p2; ... ; pi; ...; pn; q)
has all roots real numbers (and negative).
|
6 |
Surfaces in 4-space from the affine differential geometry viewpoint / Superfícies em 4-espaço desde o ponto de vista da geometria diferencial afimLuis Florial Espinoza Sánchez 26 September 2014 (has links)
In this thesis, we study locally strictly convex surfaces from the affine differential viewpoint and generalize some tools for locally strictly submanifolds of codimension 2. We introduce a family of affine metrics on a locally strictly convex surface M in affine 4-space. Then, we define the symmetric and antisymmetric equiaffine planes associated with each metric. We show that if M is immersed in a locally atrictly convex hyperquadric, then the symmetric and the antisymmetric planes coincide and contain the affine normal to the hyperquadric. In particular, any surface immersed in a locally strictly convex hyperquadric is affine semiumbilical with respect to the symmetric or antisymmetric equiaffine planes. More generally, by using the metric of the transversal vector field on M we introduce the affine normal plane and the families of the affine distance and height functions on M. We show that the singularities of the family of the affine height functions appear at directions on the affine normal plane and the singularities of the family of the affine distance functions appear at points on the affine normal plane and the affine focal points correspond as degenerate singularities of the family of affine distance functions. Moreover we show that if M is immersed in a locally strictly convex hypersurface then the affine normal plane contains the affine normal vector to the hypersurface. Finally, we conclude that any surface immersed in a locally strictly convex hypersphere is affine semiumbilical. / Nesta tese estudamos as superfícies localmente estritamente convexas desde o ponto de vista da geometria diferencial afim e generalizamos algumas ferramentas para subvariedades localmente estritamente convexas de codimensão 2. Introduzimos uma família de métricas afins sobre uma superfície localmente estritamente convexa M no 4-espaço afim. Então, definimos os planos equiafins simétrico e antissimétrico associados com alguma métrica. Mostramos que se M é imersa em uma hiperquádrica localmente estritamente convexa, então os planos simétrico e assimétrico são iguais e contêm o campo vetorial normal afim à hiperquádrica. Em particular, qualquer superfície imersa em uma hiperquádrica localmente estritamente convexa é semiumbílica afim com relação ao plano equiafim simétrico ou antissimétrico. Mais geralmente, usando a métrica do campo transversal sobre M introduzimos o plano normal afim e as famílias de funções distância e altura afim sobre M. Provamos que as singularidades da família de funções altura afim aparecem como direções do plano normal afim e as singularidades da família de funções distância afim aparecem como pontos sobre o plano normal afim e os pontos focais correspondem às singularidades degeneradas da família de funções distância afim. Também provamos que se M é uma superfície imersa em uma hipersuperfície localmente estritamente convexa, então o plano normal afim contém o vetor normal afim à hipersuperfície. Finalmente, concluímos que qualquer superfície imersa em uma hiperesfera localmente estritamente convexa é semiumbílica afim.
|
7 |
Surfaces in 4-space from the affine differential geometry viewpoint / Superfícies em 4-espaço desde o ponto de vista da geometria diferencial afimSánchez, Luis Florial Espinoza 26 September 2014 (has links)
In this thesis, we study locally strictly convex surfaces from the affine differential viewpoint and generalize some tools for locally strictly submanifolds of codimension 2. We introduce a family of affine metrics on a locally strictly convex surface M in affine 4-space. Then, we define the symmetric and antisymmetric equiaffine planes associated with each metric. We show that if M is immersed in a locally atrictly convex hyperquadric, then the symmetric and the antisymmetric planes coincide and contain the affine normal to the hyperquadric. In particular, any surface immersed in a locally strictly convex hyperquadric is affine semiumbilical with respect to the symmetric or antisymmetric equiaffine planes. More generally, by using the metric of the transversal vector field on M we introduce the affine normal plane and the families of the affine distance and height functions on M. We show that the singularities of the family of the affine height functions appear at directions on the affine normal plane and the singularities of the family of the affine distance functions appear at points on the affine normal plane and the affine focal points correspond as degenerate singularities of the family of affine distance functions. Moreover we show that if M is immersed in a locally strictly convex hypersurface then the affine normal plane contains the affine normal vector to the hypersurface. Finally, we conclude that any surface immersed in a locally strictly convex hypersphere is affine semiumbilical. / Nesta tese estudamos as superfícies localmente estritamente convexas desde o ponto de vista da geometria diferencial afim e generalizamos algumas ferramentas para subvariedades localmente estritamente convexas de codimensão 2. Introduzimos uma família de métricas afins sobre uma superfície localmente estritamente convexa M no 4-espaço afim. Então, definimos os planos equiafins simétrico e antissimétrico associados com alguma métrica. Mostramos que se M é imersa em uma hiperquádrica localmente estritamente convexa, então os planos simétrico e assimétrico são iguais e contêm o campo vetorial normal afim à hiperquádrica. Em particular, qualquer superfície imersa em uma hiperquádrica localmente estritamente convexa é semiumbílica afim com relação ao plano equiafim simétrico ou antissimétrico. Mais geralmente, usando a métrica do campo transversal sobre M introduzimos o plano normal afim e as famílias de funções distância e altura afim sobre M. Provamos que as singularidades da família de funções altura afim aparecem como direções do plano normal afim e as singularidades da família de funções distância afim aparecem como pontos sobre o plano normal afim e os pontos focais correspondem às singularidades degeneradas da família de funções distância afim. Também provamos que se M é uma superfície imersa em uma hipersuperfície localmente estritamente convexa, então o plano normal afim contém o vetor normal afim à hipersuperfície. Finalmente, concluímos que qualquer superfície imersa em uma hiperesfera localmente estritamente convexa é semiumbílica afim.
|
Page generated in 0.0919 seconds