Spelling suggestions: "subject:"helena""
21 |
Recharge, decompression, and collapse dynamics of volcanic processes /Andrews, Benjamin James. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on June 4, 2010). Vita. Includes bibliographical references.
|
22 |
Fluvial Biogeomorphic Evolution of the Upper South Fork Toutle River, WA After the 1980 Eruption of Mount St. HelensProctor, Sarah 01 May 2017 (has links)
The eruption of Mount St. Helens in 1980 severely impacted the woody vegetation within the geomorphic floodplain as well as the morphology of the Upper South Fork Toutle River. Historic aerial imagery and LiDAR data were used in combination to create snapshots of the channel and vegetation in 1980, 1983, 1996, 2003, and 2014. This data was mapped and analyzed using GIS, with the primary focus on 2D channel change, vegetation change, and channel-vegetation interactions from 1980 to 2014. No vegetation was discernable in 1980-83 but the vegetation present in 1996 increased in area and in density from 1996 to 2014. The number of channels locations were dependent on vegetation density and presence while vegetation growth occurred predominately in areas previously occupied by the channel.
|
23 |
Tiltmeter analysis of Mount St. Helens, Skamania County, WashingtonBrown, Edward Charles 01 January 1984 (has links)
Mount St. Helens returned to an active eruptive state March 20, 1980. Since then explosive and dome building eruptions have caused major topographic changes to the mountain and surrounding drainages. Monitoring of the southern side of the mountain by six tiltmeters at distances between 6 km and 12 km was conducted during the period of July 1, 1980 to December 31, 1980. Records obtained from the tiltmeters were analyzed and compared to data from precision geodetic surveys.
|
24 |
Coping with stress following a natural disaster: the volcanic eruption of Mt. St. HelensMurphy, Shirley Ann 01 January 1981 (has links)
This study focuses on the coping responses of the bereaved immediate family and close friends of persons who died as a result of the volcanic eruption of Mt. St. Helens in southwestern Washington on May 18, 1980. Three major research questions were addressed: Is there a relationship between illness and three life events: presumed death of a close relative or friend, confirmed death of a close relative or friend, and loss of one's permanent of recreational residence? Do self-efficacy and social supports act as intervening variables to buffer the negative effects of stress on one's health when coping with loss? What are the perceived effects of the media on coping with loss following a disaster? Subjects for this study included 155 respondents. Mailed questionnaires and interviews were used to collect data approximately 11 months post-disaster from bereaved, property loss and control subjects. Data were gathered primarily by standardized measures and were analyzed by univariate, multi-variate, correlational, and content-analysis techniques. The first study question results indicate that when compared to controls, the bereaved of confirmed dead were adversely affected by their loss in areas of negative life events, hassles, depression, and somatization; the bereaved of presumed dead reported being adversely affected by negative life events and depression; the permanent-property loss subjects adversely affected by negative life events. The second study question compared the combined bereaved group (n = 69) and the control group (n = 50) to examine the buffering roles of self-efficacy and social support. For the bereaved, stress accounted for 35% of the variance (p < .001) in depression. After statistically controlling for stress, both self-efficacy and social support were significant predictors of depression (p < .05). In contrast, stress accounted for 44% of the variance in depression for the controls, but neither self-efficacy nor social support made additional contributions in the prediction of any of the health outcome variables. Findings from the third study question indicate that the confirmed bereaved reported significantly more (p < .05) negative effects resulting from the media than any of the other study groups. Factors that might account for the findings and clinical interventions were suggested.
|
25 |
Using the Oxidation State of Iron Plagioclase to Evaluate Magma Oxygen Fugacity: A micro-XANES StudyLac, Don 01 January 2009 (has links) (PDF)
No description available.
|
26 |
Recharge, decompression, and collapse : dynamics of volcanic processesAndrews, Benjamin James 09 June 2010 (has links)
Non-linear volcanic and magmatic processes control the occurrence and behavior of volcanic eruptions. Consequently, understanding the responses of volcanic systems to processes of different length scales, timescales, and magnitudes is critical to interpreting ancient deposits, understanding current eruption dynamics, and predicting future activity. Here I present the results of three studies wherein analytical geochemistry, experimental petrology, and turbulent flow analysis describe otherwise obscured volcanic processes. Injections of new magma are common events in magma chambers. Recharging magma can change the chamber composition and temperature and may facilitate assimilation of country rock. Plagioclase phenocrysts provide an opportunity to examine recharge and assimilation processes, because their compositions are sensitive to temperature and their Sr isotopic ratios can record compositional variations in the chamber. Chemical and isotopic microanalyses of crystals from 7 eruptions of El Chichón Volcano, Mexico, reveal that recharge and assimilation events are very common and mixing is efficient, but individual events seldom affect the entire chamber. During every eruption, magma decompresses and ascends through a conduit from a chamber at depth to a vent at the surface. Changes in pumice textures during the 1800 ¹⁴C yr BP eruption of Ksudach Volcano, Kamchatka, suggest that conduit structure changed following caldera collapse. Decompression experiments show that the post-collapse pumice decompressed at ~0.0025 MPa/s, compared to pre-collapse decompression rates of >0.01 MPa/s. By balancing those results with eruptive mass fluxes I quantify the effects of caldera collapse on a conduit, and show that collapse resulted in a conduit with a very broad base and narrow vent. Turbulent air entrainment controls whether an eruption column rises buoyantly or collapses to generate pyroclastic flows. Through extensive re-evaluation of video and photographs of the 18 May 1980 eruption of Mount St. Helens, I report the first measurements of the turbulent velocity field of a volcanic column and show that changes in its turbulence reflect changes in eruption behavior. Those results indicate collapse was caused by a reduction in eddy size and turbulent air entrainment initiated by an increased vent size and the development of a buoyant annulus surrounding a dense, collapsing core. / text
|
27 |
Modélisation numérique des déformations d'un édifice volcanique : application au Mont St HelensPaul, Anne 21 January 1986 (has links) (PDF)
La mesure des déplacements de surface liés â l'activité volcanique est une méthode très utilisée dans la surveillance et l'étude des volcans actifs. De nombreux modèles mécaniques ont été réalisés pour tenter de déduire la structure interne de ces données de déplacements, et notamment pour localiser les chambres magmatiques. Mais ils négligent tous le caractère fortement hétérogène et discontinu des édifices volcaniques. Un nouveau modèle permettant précisément l'étude des milieux hétérogènes et fracturés est utilisé. Son hypothèse de base est que l'édifice se comporte comme s'il était constitué d'un assemblage de blocs se déplaçant les uns par rapport aux autres. L'éruption très bien documentée du Mont St Helens (1980) sert de test pour cette méthode de blocs, en permettant de comparer déplacements calculés et déplacements mesurés. Quatre modèles bi-dimensionnels de ce volcan sont construits à partir d'une coupe géologique nord-sud. Chacun d'eux permet de tester l'effet d'un paramètre du modèle (géométrie, conditions aux limites, coefficient de frottement entre blocs, chemin de sollicitation). L'intrusion d'un dôme de lave à l'intérieur du flanc nord est simulée par l'application d'une montée en pression incrémentale puis les modèles sont soumis à une accélération horizontale simulant un séisme. Les résultats de cette modélisation mettent en évidence la dépendance des modes de déformation et de rupture vis à vis du coefficient de frottement entre les blocs. On obtient un assez bon accord avec les observations pour la plus faible des deux valeurs de ce coefficient testées (O.S). La rupture du flanc nord en grand glissement de terrain se produit aussi bien sous la seule influence de la montée en pression que sous pression et séisme combinés. Mais le second type de chargement donne un meilleur accord des résultats avec la réalité, et confirme ainsi qu'un séisme était bien à l'origine de l'éruption. Enfin, on discute, à la lumière de ces résultats, de la possibilité d'appréhender les structures internes et les mouvements du magma, à partir des mesures de déplacements de surface.
|
Page generated in 0.0484 seconds