• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 12
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 48
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contributions To Venominformatics : Sequence-Structure-Function Studies Of Toxins From Marine Cone Snails. Application Of Order-Statistics Filters For Detecting Membrane-Spanning Helices

Mondal, Sukanta 02 1900 (has links)
Venomous animals have evolved a vast array of peptide toxins for prey capture and defense. Nature has evolved the venoms into a huge library of active molecules with high selectivity and affinity, which could be explored as therapeutics or serve as a template for drug design. The individual components of venom i.e. toxins are used in ion channel and receptor studies, drug discovery, and formulation of insecticides. ‘Venominformatics is a systematic bioinformatics approach in which classified, consolidated and cleaned venom data are stored into repositories and integrated with advanced bioinformatics tools and computational biology for the analysis of structure and function of toxins.’ Conus peptides (conopeptides), the main components of Conus venom, represent a unique arsenal of neuropharmacologically active molecules that have been evolutionarily tailored to afford unprecedented and exquisite selectivity for a wide variety of ion-channel subtypes and neuronal receptors. Ziconotide (ω-conotoxin MVIIa from Conus magus (Magician's cone snail)), is proven as an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain (U.S. Food and Drug Administration. Center for Drug Evaluation and Research) attesting to the pharmaceutical importance of Conus peptides. From the point of view of protein sequence and structure analysis, conopeptides can serve as attractive systems for the studies in sequence comparison, pattern extraction, structure–function correlations, protein–protein interactions and evolutionary analysis. Despite their importance and extensive experimental investigations on them, they have been hardly explored through in silico methods. The present thesis is perhaps the first attempt at deploying a multi-pronged bioinformatics approaches for studies in the burgeoning field of conopeptides. In the process of sequence-structure-function studies of conopeptides, we have created several sequence patterns of different conopeptide families and these have been accepted for inclusion in international databases such as PROSITE, the first pattern database to have been developed (http://www.expasy.org/prosite) and INTERPRO (http://www.ebi.ac.uk/interpro). More importantly, we have carried out extensive literature survey on the peptides for which we have defined the patterns to create PROSITE compatible documentation files (PDOC6004, PDOC60025 and PDOC60027). We have also created a series of sequence patterns and associated documentation filesof pharmaceutically promising peptides from plants and venomous animals (including O-conotoxin and P-conotoxin superfamily members) with knottin scaffold. Knottins provide appealing scaffolds for protein engineering and drug design due to their small size, high structural stability, strong sequence tolerance and easy access to chemical synthesis. The sequence patterns and associated documentation files created by us should be useful in protein family classification and functional annotation. Even though patterns might be useful at the family level, they may not always be adequate at the superfamily level due to hypervariability of mature toxins. In order to overcome this problem, we have demonstrated the applicationos of multi-class support vector machines (MC-SVMs) for the successful in silico classification of the mature conotoxins into their superfamilies. TheI- and J-conotoxin-superfamily members were analyzed in greater detail. On the basis of in silico analysis, we have divided the 28 entries previously grouped as I-conotoxin superfamily in UniProtKB/Swiss-Prot (release 49.0) into I1 and I2 superfamilies inview of their having two different types of signal peptides and exhibiting distinct functions. A comparative study of the theoretically modeled structure of ViTx from Conus virgo, a typical member of I2-conotoxin superfamily, reveals the crucial role of C-terminal region of ViTx in blocking therapeutically important voltage-gated potassium channels. Putative complexes created by us of very recently characterized J-superfamily conotoxin p11-4a with Kv1.6 suggest that the peptide interacts with negatively charged extracellular loops and pore-mouth of the potassium channel and blocks the channel by covering the pore as a lid, akin to previously proposed blocking mechanism of kM-conotoxin RIIIK from Conus radiatus to Tsha1 potassium channel. This finding provides a pointer to experimental work to validate the observations made here. Based on differences in the number and distribution of the positively charged residues in other conopeptides from the J-superfamily, we hypothesize different selectivity profile against subtypes of the potassium channels for these conopeptides. Furthermore, the present thesis reports the application of order-statistic filters and hydrophobicity profiles for predicting the location of membrane-spanning helices. The Proposed method is in particular effective for the class of helical membrane proteins, namely the therapeutically important voltage-gated ion channels, which are natural targets of several conotoxins. Our suggested ab initio approach is comparatively better than other spatial filters, confirming to the efficacy of including the concept of order or ranking information for prediction of TM helicdes. Such approaches should be of value for improved prediction performance including in large-scale applications. In addition, anlaysis has been carried out of the role of context in the relationship between form and function for the true PDB hits of some nonCys-rich PROSITE patterns. We have found specific examples of true hits of some PROSITE patterns displaying structural plasticity by assuming significantly different local conformation, depending upon the context. The work was carried out as a part of the research interest in our group in studying structural and other features of protein sequence patterns. The Contributions of the candidate to venominormatics include, creation of protein sequence patterns and information highlighting the importance of the patterns as gleaned from the lteratures for family classification: profile HMM and MC-SVMs for conotoxin superfamily classification; in silico characterization of I1 and I2 conotoxin superfamilies; studies of interaction with Kv1 channels of typical members of I2 and 3 conotoxin superfamilies and development of improved methods for detecting membrane-spanning helices. Chapter I starts with a brief account of venominformatics; bioinformatics for venoms and toxins. Chapter 2 presents a regular expression based classification of Conus peptides. Chapter 3 revisits the 28 entries previously grouped as I-conotoxin superfamily in UniProt Swiss-Prot knowledgebase (release 49.0) having four disulfide bonds with Cys arrangement C-C-CC-CC-C-C and they inhibit or modify ion channels of nerve cells. Chapter 4 describes pseudo-amino acid composition and MC-SVMs approach for conotoxin superfamily classification. Chapter 5 describes in silico detection of binding mode with Kv1.6 channel of J-superfamily conotoxin p114a from bermivorouos cone snail, Conus planorbis. Chapter 6 presents a comparative sequence-structure-function analysis of naturally occurring Cys-rich peptides having the Knottin or inhibitor cystine knot(ICK) scaffold, from different plants and venomous animals based on information available in the knottin database(http://knottin.cbs.cnrs.fr/). Chapter 7 describes the application of order-statistic filters and hydrophobicity profiles for detecting membrane-spanning helices. Chapter 8 describes the role of context in the relationship between form and function for the true PDB hits of some non Cys-rich PROSITE patterns. Chapter 9 summaries the important findings of the present studies on naturally occurring bioactive Cys-rich peptides with emphasis on Conus peptides and their interactions with respective target such as voltage-gated ion channels.
32

Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

de Marothy, Tuuli Minttu Virkki January 2014 (has links)
Most membrane proteins are inserted into the membrane co-translationally utilizing the translocon, which allows a sufficiently long and hydrophobic stretch of amino acids to partition into the membrane. However, X-ray structures of membrane proteins have revealed that some transmembrane helices (TMHs) are surprisingly hydrophilic. These marginally hydrophobic transmembrane helices (mTMH) are not recognized as TMHs by the translocon in the absence of local sequence context. We have studied three native mTMHs, which were previously shown to depend on a subsequent TMH for membrane insertion. Their recognition was not due to specific interactions. Instead, the presence of basic amino acids in their cytoplasmic loop allowed membrane insertion of one of them. In the other two, basic residues are not sufficient unless followed by another, hydrophobic TMH. Post-insertional repositioning are another way to bring hydrophilic residues into the membrane. We show how four long TMHs with hydrophilic residues seen in X-ray structures, are initially inserted as much shorter membrane-embedded segments. Tilting is thus induced after membrane-insertion, probably through tertiary packing interactions within the protein. Aquaporin 1 illustrates how a mTMH can shape membrane protein folding and how repositioning can be important in post-insertional folding. It initially adopts a four-helical intermediate, where mTMH2 and TMH4 are not inserted into the membrane. Consequently, TMH3 is inserted in an inverted orientation. The final conformation with six TMHs is formed by TMH2 and 4 entering the membrane and TMH3 rotating 180°. Based on experimental and computational results, we propose a mechanism for the initial step in the folding of AQP1: A shift of TMH3 out from membrane core allows the preceding regions to enter the membrane, which provides flexibility for TMH3 to re-insert in its correct orientation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
33

Molecular Dynamics Simulation Of Transmembrane Helices And Analysis Of Their Packing In Integral Membrane Proteins

Iyer, Lakshmanan K 09 1900 (has links) (PDF)
No description available.
34

Foldamères d’oligoamides aromatiques : des doubles hélices artificielles aux ligands de G-quadruplex

Baptiste, Benoît 17 December 2009 (has links)
Les oligopyridine-dicarboxamides et les oligoquinoline-carboxamides sont des oligomères synthétiques capables d’adopter des conformations hélicoïdales stables et bien définies. Les premiers sont comparables à des ressorts moléculaires qui peuvent s’étirer puis s’autoassembler pour former des doubles hélices artificielles. L’étude structurale d’oligopyridines de différentes tailles par diffraction des rayons X et RMN a permis d’éclaircir les principes de l’hybridation en double hélice. Par exemple, nous constatons que la stabilité du duplex est d’autant plus grande que l’oligomère est long mais la cinétique de l’hybridation décroit avec la taille des hélices. Ces propriétés sont modulables en fonction de divers paramètres tels que le solvant ou les substituants des pyridines. Les seconds forment de simples hélices moléculaires stables dans les solvants organiques mais aussi dans l’eau. Nous avons développé leur synthèse sur support solide afin de disposer de séquences variées, à l’image des alpha-peptides. Des études par RMN suggèrent que l’introduction d’unités aminométhylpyridines au sein d’un oligoquinoline hydrosoluble apporte de la flexibilité sans perturber sa structure hélicoïdale. Cela témoigne de la stabilité de ces structures secondaires dans les solvants protiques. Par ailleurs, certains de ces peptidomimes s’avèrent capables de reconnaitre et stabiliser des motifs structuraux particuliers de l’ADN : les G-quadruplex. Etant donné que ces architectures se forment à des endroits clés du génome impliqués dans des cancers, ces hélices moléculaires font figure de potentiels agents antitumoraux d’un nouveau genre. / Oligopyridine-dicarboxamides and oligoquinoline-carboxamides are synthetic oligomers able to fold into stable and well defined helical conformations. The first ones are comparable to molecular springs which can extend then associate to form artificial double helices. A structural study of oligopyridines of various sizes by X-ray diffraction and NMR provided a better understanding of the hybridization process. For example, we noticed that the stability of the duplex is all the higher as the oligomer is long but the kinetics of hybridization decrease with length. These properties depend on diverse parameters such as the solvent or the substituants of pyridine rings. The second family forms stable single helices in organic solvents and also in water. We adapted their synthesis on solid support to promote accessibility to a variety of sequences, just like for alphas-peptides. NMR studies suggested that the introduction of aminomethylpyridine units within a hydrophilic oligoquinoline strand brings some flexibility without disrupting its helical structure, showing the high stability of these secondary structures in protic solvents. Besides, some of these peptidomimetics turn out to be capable of recognizing and stabilizing a particular DNA motif: G-quadruplex structure. Given that these architectures form in critical places of the genome involved in cancers, these molecular helices may represent a new class of potential antitumoral agents.
35

Foldamères d’oligoamides aromatiques pour le développement de structures secondaires bio-inspirées / Aromatic oligoamide foldamers for the development of bio-inspired secondary structures

Lamouroux, Arthur 19 December 2018 (has links)
Pour mimer le repliement des structures tridimensionnelles des biomolécules, les chimistes ont développé des oligomères artificiels capables d’adopter des formes repliées et bien définie en solution : les foldamères. Néanmoins, la variété des structures secondaires isolées que l’on rencontre au sein des foldamères n’atteint pas encore celle des biomolécules. La combinaison de différentes séquences d’oligoamides aromatiques ayant des structures secondaires distinctes a permis le développement d’architectures de type « hélice-feuillet-hélice » définie dans lesquelles chaque sous-composant secondaire conserve son intégrité respective. Ces objets uniques en forme de panier possèdent une fenêtre ouverte modulable inscrite dans le squelette du foldamère par laquelle une molécule invitée peut être accueillie. Comme preuve de concept, la liaison et le relargage d’une molécule invitée à l’une de ces structures se sont révélées rapides à l’échelle de la RMN 1H. Ensuite, le développement de brins oligomériques composés de monomères codant pour de faibles rayons de courbure a permis l’obtention d’hélices doubles. Ces structures auto-assemblées de haut-poids moléculaires possèdent un diamètre de l’ordre du nanomètre. Enfin, des segments hélicoïdaux codant pour des diamètres larges ont été couplés à des pseudo-coudes artificiels dans le but d’obtenir des architectures possédant une large cavité polaire inspirés de la structure des tonneaux β. Ces approches ouvrent la voie vers la conception d’objets moléculaires toujours plus complexes au-delà la chimie des biomolécules. / To mimic the particular folding of the biomolecules’ three-dimensional structures, chemists have developed artificial oligomers that fold into a compact and well-defined structures in solution: foldamers. Nevertheless, the variety of isolated secondary structures of foldamers is not equal to those of biomolecules. The association of different sequences of aromatic oligoamide having distinct secondary structures allowed the development of well-defined helix-sheet-helix architectures in which subcomponents conserve their respective integrity. These unique basket-like objects possess an open-window within the foldamer backbone in which a molecular guest can be accommodate. As a proof of concept, guest binding to one of these structures was found to be fast on the NMR time scale. Then, the development of oligoamide aromatic strands made of monomer encoding for low curvature has allowed to obtain double helices structures. These self-assembled structures showing high molecular weights present a nanometer scale diameter. Eventually, these oligomeric strands were coupled to artificial turn units to obtain β-barrels-like architectures having a large polar cavity. These approaches open the access to the design of ever more complex molecular objects beyond the chemistry of biomolecules.
36

X-Ray Crystallographic Studies Of Designed Peptides And Protected Omega Amino Acids : Structure, Conformation, Aggregation And Aromatic Interactions

Sengupta, Anindita 01 1900 (has links)
Peptides have assumed considerable importance in pharmaceutical industry and vaccine research. Understanding the structural features of these peptide molecules can be effective not only in mimicking natural proteins but also in the design of new biomaterials. Polypeptide sequences consisting of twenty genetically coded amino acids possess structural flexibility, which makes the predictions difficult. However, the introduction of non-protein amino acids into the peptide chain restricts the available range of backbone conformations and acts as stereochemical directors of polypeptide chain folding. Such conformationally rigid residues allow the formation of well defined structures like helices, strands etc, which further assemble into super secondary structural motifs by flexible linkages. Crystal structure determination of the oligopeptides by X-ray diffraction gives insight into the specific conformational states, modes of aggregation, hydrogen bond interactions, solvation of peptides and various weakly polar interactions involving the side chains of aromatic residues (Phe, Trp and Tyr). In β-, γ- and higher ω-amino acids, due to the insertion of one or more methylene groups between the N- and Cα-atoms into the peptide backbone the accessible conformational space is greater than the α-amino acids. The β-, γ-, δ-…. amino acid residues belong to the family of ω-amino acids. Extensive research in the field of β-peptides, which have been experimentally verified or theoretically postulated, has assigned several helices, turns and sheets. The use of ω-amino acid residues in conjunction with α-residues permits systematic exploration of the effects of introducing additional backbone atoms into well-characterized α-peptide structures. The observation of new families of hydrogen bonded motifs in the hybrid peptides containing α- and ω-amino acids are the recent interest in this regard. This thesis reports results of X-ray crystallographic studies of eighteen designed peptides and four protected ω-amino acids listed below. Within brackets are given the abbreviations used for the sequences (Symbol U represents Aib). The ω-amino acids reported in this thesis are: (S)-β3-HAla (β3-homoalanine), (R)-β3-HVal, (S)-β3-HVal (β3-homovaline), (S)-β3-HPhe (β3-homophenylalanine), (S)-β3-HPro (β3-homoproline), βGly (β-homoglycine), γAbu (gamma aminobutyric acid) and δAva (delta aminovaleric acid). 1. Boc-Leu-Trp-Val-OMe (LWV), C28H42N4O6 2. Ac-Leu-Trp-Val-OMe (Space group P21) (LWV1), C25H36N4O5 3. Ac-Leu-Trp-Val-OMe (Space group P212121) (LWV2), C25H36N4O5 4. Boc-Leu-Phe-Val-OMe (LFV), C26H41N3O6 5. Ac-Leu-Phe-Val-OMe (LFV1), C23H35N3O5 6. Boc-Ala-Aib-Leu-Trp-Val-OMe (AULWV), C35H54N6O8 7. Boc-Trp-Trp-OMe (WW), C28H32N4O5 8. Boc-Trp-Aib-Gly-Trp-OMe. (WUGW), C34H42N6O7 9. Boc-Leu-Trp-Val-Ala-Aib-Leu-Trp-Val-OMe (H8AU), C57H84N10O11 10. Boc-(S)-β3-HAla-NHMe (BANH), C10H20N2O3 11. Boc-(R)-β3-HVal-NHMe (BVNH), C12H24N2O3 12. Boc-(S)-β3-HPhe-NHMe (BFNH), C16H24N2O3 13. Boc-(R)-β3-HVal-(R)-β3-HVal-OMe (BVBV), C18H34N2O5 14. Boc-(R)-β3-HVal-(S)-β3-HVal-OMe (LVDV), C18H34N2O5 15. Boc-(S)-β3-HPro-OH (BPOH), C11H19N1O4 16. Boc-Leu-Phe-Val-Aib-(S)-β3-HPhe-Leu-Phe-Val-OMe (UBF8), C60H88N8O11 17. Piv-Pro-Gly-NHMe (PA1), C13H23N3O3 18. Piv-Pro-βGly-NHMe (PB1), C14H25N3O3 19. Piv-Pro-βGly-OMe (PBO), C14H24N2O4 20. Piv-Pro-δAva-OMe (PDAVA), C16H28N2O4 21. Boc-Pro-γAbu-OH (BGABU), C14H24N2O5 22. Boc-Aib-γAbu-OH (UG), C13H24N2O5 23. Boc-Aib-γAbu-Aib-OMe (UGU), C18H33N3O6 The thesis is divided into seven chapters. Chapter 1 gives a general introduction to the stereochemistry of polypeptide chains and the secondary structure classification: helices, β-sheets and β-turns followed by an overview of different types of weakly polar interactions involving the side chains of aromatic amino acid residues. This section also provides a brief overview of the conformational analysis of β-, γ- and higher ω-amino acid residues in oligomeric β-peptides and in α,ω-hybrid peptides. A brief discussion on X-ray diffraction and solution to the phase problem is also presented. Chapter 2 describes the crystal structures of the peptides, Boc-Leu-Trp-Val-OMe (LWV), the two polymorphs of Ac-Leu-Trp-Val-OMe (LWV1 and LWV2), Boc-Leu-Phe-Val-OMe (LFV), Ac-Leu-Phe-Val-OMe (LFV1) and Boc-Ala-Aib-Leu-Trp-Val-OMe (AULWV), in order to explore the nature of interactions between aromatic rings, specifically the indole side chain of Trp residues [1]. Peptide LWV adopts a type I β-turn conformation, stabilized by an intramolecular 4→1 hydrogen bond. Molecules of LWV pack into helical columns stabilized by two intermolecular hydrogen bonds, Leu(1)NH…O=CTrp(2) and Indole NH…O=CLeu(1). The superhelical columns further pack into the tetragonal space group P43 by means of a continuous network of indole - indole interactions. The peptide Ac-Leu-Trp-Val-OMe crystallized in two polymorphic forms: P21 (LWV1) and P212121 (LWV2). In both forms, the peptide backbone is extended and the crystal packing shows anti-parallel β-sheet arrangement. Similarly, extended strand conformation and anti-parallel β-sheet formation are also observed in the Phe containing analogs, LFV and LFV1. The pentapeptide AULWV adopts a short stretch of 310-helix. Analysis of aromatic - aromatic and aromatic - amide interactions in the structures of peptides LWV, LWV1 and LWV2 are reported along with the examples of 12 Trp containing peptides from the Cambridge Structural Database. The results suggest that there is no dramatic preference for the orientation of two proximal indole rings. In Trp containing peptides specific orientations of the indole ring, with respect to the preceding and succeeding peptide units, appear to be preferred in β-turns and extended structures. Crystal parameters LWV: C28H42N4O6; P43; a = 14.698(1) Å, b = 14.698(1) Å, c = 13.975(2) Å; Z = 4; R = 0.0737, wR2 = 0.1641. LWV1: C25H36N4O5; P21; a =10.966(3) Å, b = 9.509(2) Å; c = 14.130(3) Å, β = 104.94(1)°; Z = 2; R = 0.0650, wR2 = 0.1821. LWV2: C25H36N4O5; P212121; a = 9.533(6) Å, b = 14.148(9) Å, c = 19.53(1) Å, Z = 4; R = 0.0480, wR2 = 0.1365. LFV: C26H41N3O6; C2; a = 31.318(8) Å, b = 10.022(3) Å, c = 9.657(3) Å, β = 107.41(1)°; Z = 4; R = 0.0536, wR2 = 0.1328. LFV1: C23H35N3O5; P212121; a = 9.514(8) Å, b = 13.56(1) Å, c = 20.04(2) Å, Z = 4; R = 0.0897, wR2 = 0.1960. AULWV: C35H54N6O8.2H2O; P21; a = 9.743(3) Å, b = 22.807(7) Å, c = 10.106(3) Å, β = 105.73(2)°; Z = 2; R = 0.0850; wR2 = 0.2061. Chapter 3 describes the crystal structures of three peptides containing Trp residues at both N- and C-termini of the peptide backbone: Boc-Trp-Trp-OMe (WW), Boc-Trp-Aib-Gly-Trp-OMe (WUGW) and Boc-Leu-Trp-Val-Ala-Aib-Leu-Trp-Val-OMe (H8AU). Peptide WW adopts an extended conformation and the molecules pack into an arrangement of parallel β-sheet in crystals, stabilized by three intermolecular N-H…O hydrogen bonds. The potential hydrogen bonding group NE1H of Trp(1), which does not take part in hydrogen bonding interaction with an oxygen acceptor participate in an intermolecular N-H…π interaction. Peptide WUGW adopts a folded structure, stabilized by a consecutive type II-I’ β-turn conformation. The crystal of WUGW contains a stoichiometric amount of chloroform in two distinct sites each with an occupancy factor of 0.5 and the structure provides examples of N-H…π, C-H…π, π…π, N-H…Cl, C-H…Cl and C-H…O interactions [2]. The molecular conformation of H8AU reveals a 310-helix. The crystal structure of H8AU reveals an interesting packing motif in which helical columns are stabilized by side chain - backbone hydrogen bond involving the indole NH of Trp(2) as donor and C=O group of Leu(6) as acceptor of a neighboring molecule, which closely resembles the hydrogen bonding pattern obtained in the tripeptide LWV [1]. Helical columns also associate laterally and strong interactions are observed between the Trp(2) and Trp(7) residues on neighboring molecules [3]. The edge-to-face aromatic interactions between the indoles suggest a potential C-H…π interaction involving the CE3H of Trp (2) Crystal parameters WW: C28H32N4O5; P212121; a = 5.146(1) Å, b = 14.039(2) Å, c = 35.960(5) Å; Z = 4; R = 0.0503, wR2 = 0.1243. WUGW: C34H42N6O7.CHCl3; P21; a = 12.951(5) Å, b = 11.368(4) Å, c = 14.800(5) Å, β = 101.41(2)°; Z = 2; R = 0.1095, wR2 = 0.2706. H8AU: C57H84N10O11; P1; a = 10.494(7) Å, b = 11.989(7) Å, c = 13.834(9) Å, α = 70.10(1)°, β = 82.74(1)°, γ = 78.96(1)°; Z = 1; R = 0.0855, wR2 = 0.1965. Chapter 4 describes the crystal structures of four protected β-amino acid residues, Boc-(S)-β3-HAla-NHMe (BANH); Boc-(R)-β3-HVal-NHMe (BVNH); Boc-(S)-β3-HPhe-NHMe (BFNH); Boc-(S)-β3-HPro-OH (BPOH) and two β-dipeptides, Boc-(R)-β3-HVal-(R)-β3-HVal-OMe (BVBV); Boc-(R)-β3-HVal-(S)-β3-HVal-OMe (LVDV). Gauche conformations about the Cβ-Cα bonds (θ ~ ± 60°) are observed for the β3-HPhe residue in BFNH and all four β3-HVal residues in the dipeptides BVBV and LVDV. Trans conformations (θ ~ 180°) are observed for β3-HAla residues in both independent molecules in BANH and for the β3-HVal and β3-HPro residues in BVNH and BPOH, respectively. In all these cases except for BPOH, molecules associate in the crystals via intermolecular backbone hydrogen bonds leading to the formation of sheets. The polar strands formed by β3-residues aggregate in both parallel (BANH, BFNH, LVDV) and anti-parallel (BVNH, BVBV) fashion. Sheet formation accommodates both the trans and gauche conformations about the Cβ - Cα bonds [4]. Crystal parameters BANH: C10H20N2O3; P1; a = 5.104(2) Å, b = 9.469(3) Å, c = 13.780(4) Å, α = 80.14(1)°, β = 86.04(1)°, γ = 89.93(1)°; Z =2; R = 0.0489, wR2 = 0.1347. BVNH: C12H24N2O3; P212121; a = 8.730(2) Å, b = 9.741(3) Å, c = 17.509(5) Å; Z = 4; R = 0.0479, wR2 = 0.1301. BFNH: C16H24N2O3; C2; a = 20.54(1) Å, b = 5.165(3) Å, c = 16.87(1) Å, β = 109.82(1)°; Z = 4; R = 0.0909, wR2 = 0.1912. BVBV: C18H34N2O5; P212121; a = 9.385(2) Å, b = 11.899(2) Å, c = 19.199(4) Å; Z = 4; R = 0.0583, wR2 = 0.1589. LVDV: C18H34N2O5; P212121; a = 5.170(4) Å, b = 10.860(8) Å, c = 37.30(3) Å; Z = 4; R = 0.0787, wR2 = 0.1588. BPOH: C11H19N1O4; P1; a = 5.989(2) Å, b = 6.651(2) Å, c = 8.661(3) Å, α = 70.75(1)°, β = 77.42(1)°, γ = 86.98(1)°; Z = 1; R = 0.0562, wR2 = 0.1605. Chapter 5 describes a new class of polypeptide helices in hybrid sequences containing α-, β- and γ-residues. The molecular conformation in crystals determined for the octapeptide Boc-Leu-Phe-Val-Aib-(S)-β3-HPhe-Leu-Phe-Val-OMe (UBF8) reveals an expanded helical turn in the hybrid sequence (ααβ)n. A repetitive helical structure composed of C14 hydrogen bonded units is observed. Using experimentally determined backbone torsion angles for the hydrogen bonded units formed by hybrid sequences, the energetically favorable hybrid helices have been generated. Conformational parameters are provided for C11, C12, C13, C14 and C15 helices in hybrid sequences [5]. Crystal parameters UBF8: C60H88N8O11; P212121; a = 12.365(1) Å, b = 18.940(2) Å, c = 27.123(3) Å; Z = 4; R = 0.0625, wR2 = 0.1274. Chapter 6 describes the crystal structures of five model peptides Piv-Pro-Gly-NHMe (PA1), Piv-Pro-βGly-NHMe (PB1), Piv-Pro-βGly-OMe (PBO), Piv-Pro-δAva-OMe (PDAVA) and Boc-Pro-γAbu-OH (BGABU). A comparison of the structures of peptides PA1 and PB1 illustrates the dramatic consequences upon backbone homologation in short sequences. The molecule PA1 adopts a type II β-turn conformation in the crystal state, while in PB1, the molecule adopts an open conformation with the β-residue being fully extended. The peptide PBO, which differs from PB1 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the crystal state. In peptide PDAVA, the observed conformation resembles that determined for PB1 and PBO, with the δAva residue being fully extended. In peptide BGABU, the molecule undergoes a chain reversal, revealing a β-turn mimetic structure stabilized by a C-H…O hydrogen bond [6]. Crystal parameters PA1: C13H23N3O3; P1; a = 5.843(1) Å, b = 7.966(2) Å, c = 9.173(2) Å, α = 114.83(1)°, β = 97.04(1)°, γ = 99.45(1)°; Z = 1; R = 0.0365, wR2 = 0.0979. PB1: C14H25N3O3.H2O; P212121; a = 6.297(3) Å, b = 11.589(5) Å, c = 22.503(9) Å; Z = 4; R = 0.0439, wR2 = 0.1211. PBO: C14H24N2O4.H2O; P212121; a = 6.157(2) Å, b = 11.547(4) Å, c = 23.408(8) Å; Z = 4; R = 0.050, wR2 = 0.1379. PDAVA: C16H28N2O4.H2O; P21212; a = 11.33(1) Å, b = 25.56(2) Å, c = 6.243(6) Å; Z = 4; R = 0.0919, wR2 = 0.2344. BGABU: C14H24N2O5; P61; a = 9.759(2) Å, b = 9.759(2) Å, c = 29.16(1) Å; Z = 6; R = 0.0773, wR2 = 0.1243. Chapter 7 describes the crystal structures of a dipeptide, Boc-Aib-γAbu-OH (UG) and a tripeptide, Boc-Aib-γAbu-Aib-OMe (UGU) containing a single γAbu residue in each sequence. The structure of UG forms a reverse turn stabilized by a 10-membered intramolecular C-H…O hydrogen bonded ring. The peptide UGU crystallized in the triclinic space group P⎯1 with two molecules in the asymmetric unit resulting in a parallel assembly of sheets in crystals. Notably, the insertion of a single Aib residue at the C-terminus drastically changes the overall conformation of the structures. Crystal parameters UG: C13H24N2O5; P21/c; a = 16.749(3) Å, b = 5.825(1) Å, c = 16.975(3) Å; β = 111.82(1); Z = 4; R = 0.0507; wR2 = 0.1294. UGU: C18H33N3O6; P⎯1; a = 9.576(6) Å, b = 13.98(1) Å, c = 17.83(1); α = 85.31 (1); β = 77.46 (1); γ = 71.39 (1); Z = 4; R = 0.0648; wR2 = 0.1837.
37

Secondary Structures in Proteins : Identification and Analyses

Kumar, Prasun January 2016 (has links) (PDF)
Proteins are large biomolecules consisting of one or more long chains of amino acid residues. They perform a vast array of functions within living organisms. In this thesis, we present analyses of different secondary structural elements (SSEs) in proteins and various methods developed for the same purpose. Using only the geometric parameters, a program for identification of SSEs has been developed, which is more sensitive to the local structural variations. An understanding of the factors that determine the length, geometry as well as location of a particular SSE in the protein is essential to fully appreciate their respective roles in protein structures. The comparative analysis of the geometry of α-helices identified by different programs showed that STRIDE assigned α-helices are more kinked. Conformation of Pro residues in α-helices has also been studied in detail. Several interesting conclusions are drawn from the comprehensive study of π-helices and PolyProline-II (PPII) helices. In the subsequent paragraphs, a brief summary of each chapter is provided. The Introduction (Chapter 1) summarizes the relevant literature, which includes both experimental as well as theoretical studies explaining the structural and functional importance of SSEs in proteins and lays down a suitable background for the subsequent chapters in the thesis. The major questions addressed and the main goals of this thesis are described to set a suitable stage for the detailed discussions. The methodologies involved are discussed in Chapter 2. These include protocol used for preparing non-redundant datasets of protein structures, various statistical methods used to test the significance of position-wise amino acid propensities and different programs used during the course of present investigations. SSEs play an important role in the folding of proteins. However, identification of these SSEs in proteins is a common yet important concern in structural biology. Chapter 3 details a new method ASSP (Assignment of Secondary Structure in Proteins), which uses only the path traversed by the Cα atoms of the consecutive residues. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters and depending on their values, the stretches can be classified into different SSEs, viz. α, 310, π, extended β-strands and PPII and other left handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein dataset containing 1008 protein chains, which advocate that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310 and π-helices were also found to occur in considerable numbers. Various analyses demonstrated that the ASSP was able to discriminate the non α-helical segments from flanking α-helices, which were often identified as a part of α-helix by other algorithms. The standalone version of the program for the Linux as well as Windows operating systems is freely downloadable and the web server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.html. Among all SSEs in proteins, α-helices are relatively well defined. However, a precise quantitative estimate of their geometrical features and identification of terminal residues is difficult. In Chapter 4, a set of major changes/ updates, implemented in the algorithm of in-house program for analysis of geometry of helices in proteins (HELANAL), has been discussed in detail. It defines the helix parameters based on the path traced by Cα atoms alone and classifies the geometry of the helices into linear, curved, kinked and unassigned type, by fitting the least square 3D line and sphere to the local helix origin points (LHOP). The geometry assigned using HELANAL-Plus is independent of the orientation of the helix in 3D space and also does not depend on the database from which it is taken. The program is made available as a webserver as well as standalone and the helices can be viewed in the JmolApplet along with the best fit helix axis, which makes HELANAL-Plus useful for analysing the inter helix interaction and packing. The utility of the webserver has been increased by incorporating the use of SSE assignment programs like ASSP, DSSP or STRIDE. Pro kinked helices and correlation with the UP and DOWN conformation of Pro were studied in more detail. HELANAL-Plus is available at http://nucleix.mbu.iisc.ernet.in/helanalplus/index.html. Linux/Unix and windows compatible executables are also available for download. The analyses of kinks in a dataset of helices indicated a correlation with the large radius of the cylinder encompassing the residue at which the kink has been observed and many a time ASSP identified that as a π-helix. The detailed analysis of π-helices was limited due to the low frequency of identification by different algorithms. ASSP identified 659 π-helices in 3582 protein chains, solved at resolution ≤ 2.5Å and validated by molprobity. Chapter 5 reports the detailed study of the functional and structural roles of π-helices along with the position-wise amino acid propensity within and around them. These helices were found to range from 5 to 18 residues in length with the average twist and rise being 85.2°±7.2° and 1.28ű0.31Å respectively. The investigation of π-helices illustrated that they occur mostly in conjunction with α-helices. The majority of π-helices, with flanking α-helices at both termini, were found to be conserved across a large number of structures within a protein family and induce local distortions in the neighbouring α-helices. The presence of a π-helical fragment leads to appropriate orientation as well as positioning of the constituent residues and hence facilitate favourable interactions and also help in proper folding of the protein chain. The comprehensive analyses of position-wise amino acid propensity within and around π-helices showed their unique preferences, which are different from those of α-helices. Additionally and most importantly, the study also brought to light the influence of π-helices on the residue preference in preceding or succeeding α-helices and vice-versa. Study of another important SSE in proteins (Chapter 6), PPII helices, was inspired by their large number of occurrence and initiated with the aim of understanding their structural and functional roles. These helices are defined as an extended, flexible left-handed helix without intra-helical H-bonds and found to occur very frequently. ASSP identifies 3597 PPII helices in 3582 protein chains. Though PPII helices occur on a much smaller scale than α-helices and β-strands, their sheer number is still more than that of π-helices. The analyses of PPII-helices revealed that almost 50% of the total helices do not contain Pro residues and show a preference for polar residues. PPII-helices were found in conjunction with major SSEs and they often connect them. These helices range from 3 to 13 residues in length with the average twist and rise being -121.2°±9.2° and 3.0ű0.1Å respectively. The analysis of various non-bonded interactions revealed the frequent presence of C-H…N and C-H…O non-bonded interactions. The analysis of the amino acid preference within and around PPII-helices showed the avoidance of aromatic residues within the helix, while preference of Gly, Asn and Asp residues in the flanking region. Detailed analyses of various functional and structural roles mediated by PPII-helices have also been carried out. Identification and analysis of non-bonded interactions within a molecule and with the surrounding molecules are an essential part of structural studies. Given the importance of these interactions, we have developed a new algorithm named MolBridge and Chapter 7 provides the detailed description about it. MolBridge is an easy to use algorithm based purely on geometric criteria that can identify all possible non-bonded interactions, such as hydrogen bond, halogen bond, cation…π, π…π and van der Waals, in small molecules as well as biomolecules. Various features available in the webserver make it more user-friendly and interactive. The Unix/Linux version of the program is freely downloadable and the web server version is available at http://nucleix.mbu.iisc.ernet.in/molbridge/index.php. The overall conclusion from the current investigation and the possible future directions are presented in Chapter 8. Our findings suggest that the path traversed by Cα atoms is enough for the identification of SSEs. We believe that the various algorithms (ASSP, HELANAL-Plus and MolBridge) developed can provide a better understanding of the finer nuances of protein secondary structures. ASSP can make an important contribution in the better understanding of comparatively less frequent structural motifs and identification of novel SSEs. The most comprehensive study of π-helices gives in-depth insight about it. The analysis of interspersed π-helices gives a comprehensive understanding of the local deformations and variations in the helical segments. Apart from studies embodied in the thesis, author has been involved in few other studies, which are provided as appendix: Appendix A describes a program RNAHelix, which can regenerate duplexes from the dinucleotide step and base pair parameters for a given double helical DNA or RNA sequence. It can be used to generate/ regenerate the duplexes with the non-canonical base pairing as well.
38

Conformational Analysis And Design Of Disulfides In Antiparallel β-Sheets And Helices

Indu, S 07 1900 (has links) (PDF)
Disulfides are the primary covalent interactions within a protein molecule that connect residues which are sequentially distant. Naturally occurring disulfides enhance the stability of the protein by destabilization of the unfolded state. Previous attempts to introduce disulfide bridges as a means to enhance protein stability have met with mixed results. Tools have been developed to predict potential sites for disulfide introduction. However, it must be noted that engineering disulfides is not a trivial task. The effect of the engineered disulfide on protein stability is difficult to predict. There have been few systematic studies carried out to study disulfides in the context of secondary structures. The work in this thesis is aimed at studying disulfides in two kinds of secondary structures- antiparallel β-sheets and helices. In particular, the focus in this thesis is on cross-strand disulfides in antiparallel β-sheets and intrahelical disulfides. The analysis of naturally occurring disulfides in these structural elements coupled with protein engineering studies in model proteins were used to understand the effects of introducing disulfides in helices and antiparallel β-sheets. Synopsis This thesis also includes studies carried out on molten globules of four periplasmic binding proteins of E.coli- Maltose binding protein (MBP), Leucine, isoleucine, valine binding protein (LIVBP), Leucine binding protein (LBP) and Ribose binding protein (RBP). Work carried out in the lab previously had shown that these molten globules can bind the ligands that the proteins do in their corresponding native states. The analysis of the thermodynamic data obtained for these molten globules by differential scanning calorimetry (DSC) studies and isothermal titration calorimetry (ITC) to characterize stability and ligand binding respectively are described in this thesis. To further study the structural features of molten globules by fluorescence resonance energy transfer (FRET), double cysteine mutants of MBP were constructed and characterized. The rationale behind the construction of these mutants and their characterization is reported. Chapter 1 gives an introduction to disulfides in proteins. Previous attempts at cataloguing and characterizing naturally occurring disulfides are described. An overview of studies carried out to determine the effects of removal of naturally occurring disulfides in proteins and the effect of engineered disulfides in different proteins is given. The various tools developed to predict potential disulfide sites are described. Chapter 1 also briefly discusses various aspects of molten globules and FRET. Chapters 2 and 3 involve studies with cross-strand disulfides occurring in antiparallel β-sheets. A detailed analysis on various stereochemical aspects of naturally occurring cross-strand disulfides is described in Chapter 2. The reasons for these disulfides to almost exclusively occur at non-hydrogen-bonded registered pairs have been explored with conformational analysis, modeling studies and energy calculations. In Chapter 3, the effect of engineering cross-strand disulfides in four model proteins- LBP, LIVBP, MBP and Top7 are described. The ease of formation of the introduced disulfides and their effects on protein stability are described. The proteins with engineered cross-strand disulfides at exposed positions were also examined for redox activity. Our studies have shown that in antiparallel strands, engineered disulfides at exposed NHB registered pairs provide a robust means of increasing protein stability. In Chapters 4 and 5, studies about intrahelical disulfides are described. In Chapter 4, the various conformational aspects of intrahelical disulfides occurring naturally are studied. Analysis of structures of proteins in conjunction with modeling studies show that all naturally occurring intrahelical residues bridge cysteines occurring between the N-Cap and 3rd residue of helices. To further explore conformational requirements for intrahelical disulfides, Cys pairs were introduced at N-terminal and interior of helices in a E.coli thioredoxin mutant lacking its active site disulfide. The ease of formation of the engineered disulfides, and their effects on protein stability were studied. The redox activity of the engineered disulfides was also examined. The studies demonstrated that intrahelical disulfides can only occur at the N-terminus of an α-helix and that the N-terminal CYS residue must adopt a non-helical backbone conformation. Although none of the engineered intrahelical disulfides increased the stability of the protein, they conferred mild redox activity. In Chapter 5, the ability of an engineered CXXC motif to bind Zn(II) is also explored. The effect of Zn(II) on the stability of the reduced and oxidized states of an engineered protein with a N-terminal intrahelical CXXC was ascertained. I have also shown that iminodiacetate (IDA) and nitrilotriacetate (NTA) resins charged with zinc can bind the protein CGPC 95-98 in reduced state. These Synopsis preliminary experiments on metal binding show that this property of CXXC motif could be exploited to develop a protein purification method. In Chapter 6, thermodynamic characterization of molten globules of four periplasmic binding proteins (LBP, LIVBP, MBP and RBP) is described. Studies had been previously carried out in the lab to characterize the stability and ligand binding of these molten globules. All four molten globules were found to bind their corresponding ligands without conversion to the native state. In Chapter 6, the estimation of ΔCp of unfolding and ligand binding from the DSC and ITC data is described. The binding of molten globules to their ligands and the ability to undego cooperative thermal unfolding indicated the presence of native protein-like tertiary contacts. To study the molten globule structure, we decided to construct double cysteine mutants of MBP for FRET studies. We decided to employ a strategy for differential labeling of the two cysteines with two different fluorophores based on the conformational differences between MBP in the ligand bound and free forms. Seven double cysteine mutants of MBP were made. The rationale behind the construction of these mutants and their preliminary characterization is described in the appendix to Chapter 6. The optimization of the differential labeling procedure of the MBP double mutants needs to be fine-tuned before further studies through FRET. The work described in this thesis has resulted in the following publications: 1.Prajapati RS, Indu S, Varadarajan R. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. Biochemistry. 2007 (46):10339-52. 1 Indu S, Kumar ST, Thakurela S, Gupta M, Bhaskara RM, Ramakrishnan C, Varadarajan R. Disulfide conformation and design at helix N-termini. Proteins.2010 (78):1228-42. 2 Indu S, Kochat V, Thakurela S, Ramakrishnan C, Varadarajan R. Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets. (Manuscript submitted)
39

Metal coordination directed folding of intramolecularly hydrogen-bonded dendrons

Preston, Sarah Suzanne 05 January 2006 (has links)
No description available.
40

Ein Helikales Zweischichtiges Nichtbenzoides Nanographen als [10]Helicen mit Zwei Eingebetteten Heptagonalen Ringen

Yang, Lin, Ju, Yang-Yang, Medel, Miguel A., Fu, Yubin, Komber, Hartmut, Dmitrieva, Evgenia, Zhang, Jin-Jiang, Obermann, Sebastian, Campaña, Araceli G., Ma, Ji, Feng, Xinliang 22 April 2024 (has links)
Die atomgenaue Synthese von helikalen mehrschichtigen Nanographenen (NG) neuer Topologie ist aufgrund ihrer exotischen physikochemischen Eigenschaften von substanziellem Interesse. Allerdings ist die Synthese dieser Nanographene, speziell mit nicht benzoiden Ringen, äußerst herausfordernd. Wir präsentieren in diesem Artikel die effiziente Synthese des ersten helikalen zweischichtigen nichtbenzoiden Nanographens (HBNG1) ausgehend von einem maßgeschneiderten Azulen-Vorläufer, welcher bereits das neuartige Strukturelement zweier in [10]Helicen eingebetteter heptagonaler Ringe enthält. Die Einkristalldiffraktometrie gibt Einblick in die sterisch stark gespannte Doppelschichtstruktur mit einem Rekordwert für den kleinsten Interschichtabstand von nur 3.2 Å, in der Substanzklasse der doppelschichtigen Nanographene. Bemerkenswerterweise kommt es im Raum zwischen den Schichten zu π–π Wechselwirkungen. Wir untersuchten diesen Effekt durch in situ Spektroelektrochemie und Simulationen mittels Dichtefunktionaltheorie (DFT). Des Weiteren wurden die chiroptischen Eigenschaften der P/M-Enantiomere von HBNG1 durch Zirkulardichroismus und zirkular polarisierter Fluoreszenz charakterisiert.

Page generated in 0.0588 seconds