• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 110
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 290
  • 142
  • 106
  • 50
  • 34
  • 31
  • 28
  • 27
  • 26
  • 26
  • 23
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

HESCAD - an interface between HESCOMP and CADAM for the generation of helicopter models

Lu, Liang-Ju January 1985 (has links)
3-D Interactive CADAM allows for easier construction, modification, analysis, and display of 3-D geometry surfaces and wire-frames. This research forms a basis for preliminary aircraft geometric design using the CADAM system. The helicopter design program, HESCOMP, originally a batch mode program, was coupled with CADAM via the CADAM data base such that the analysis, design, and redesign of the helicopter geometry and interior equipment geometry can be accomplished interactively. HESCAD, a program which produces the helicopter preliminary design model and enables the interior equipment design process, is developed. It provides a capability to evolve rapidly and refine helicopter configurations generated automatically using output from HESCOMP or interior equipment design by graphically and numerically defining helicopter components through interactive, on line, computer graphic display devices. Helicopter 3-D wireframes are automatically produced for any HESCOMP helicopter geometry output. A method which directs CADAM to analyze the helicopter components and produce weights, centers of gravity, moments and products of inertia and to review the results of the analyses directly on the screen is provided. This research was sponsored by IBM Corporation Federal Systems Division under contract No. 417503-DE. This thesis describes and illustrates the HESCAD program. Detailed graphical results are also presented. / Master of Science / incomplete_metadata
252

Prediction of operational envelope maneuverability effects on rotorcraft design

Johnson, Kevin Lee 08 April 2013 (has links)
Military helicopter operations require precise maneuverability characteristics for performance to be determined for the entire helicopter flight envelope. Historically, these maneuverability analyses are combinatorial in nature and involve human-interaction, which hinders their integration into conceptual design. A model formulation that includes the necessary quantitative measures and captures the impact of changing requirements real-time is presented. The formulation is shown to offer a more conservative estimate of maneuverability than traditional energy-based formulations through quantitative analysis of a typical pop-up maneuver. Although the control system design is not directly integrated, two control constraint measures are deemed essential in this work: control deflection rate and trajectory divergence rate. Both of these measures are general enough to be applied to any control architecture, while at the same time enable quantitative trades that relate overall vehicle maneuverability to control system requirements. The dimensionality issues stemming from the immense maneuver space are mitigated through systematic development of a maneuver taxonomy that enables the operational envelope to be decomposed into a minimal set of fundamental maneuvers. The taxonomy approach is applied to a helicopter canonical example that requires maneuverability and design to be assessed simultaneously. The end result is a methodology that enables the impact of design choices on maneuverability to be assessed for the entire helicopter operational envelope, while enabling constraints from control system design to be assessed real-time.
253

Piezoceramic Dynamic Hysteresis Effects On Helicopter Vibration Control Using Multiple Trailing-Edge Flaps

Viswamurthy, S R 02 1900 (has links)
Helicopters suffer from severe vibration levels compared to fixed-wing aircraft. The main source of vibration in a helicopter is the main rotor which operates in a highly unsteady aerodynamic environment. Active vibration control methods are effective in helicopter vibration suppression since they can adapt to various flight conditions and often involve low weight penalty. One such method is the actively controlled flap (ACF) approach. In the ACF approach, a trailing-edge flap (TEF) located in each rotor blade is deflected at higher harmonics of rotor frequency to reduce vibratory loads at the rotor hub. The ACF approach is attractive because of its simplicity in practical implementation, low actuation power and enhanced airworthiness, since the flap control is independent of the primary control system. Multiple-flaps are better suited to modify the aerodynamic loading over the rotor blade and hence offer more flexibility compared to a single flap. They also provide the advantage of redundancy over single-flap configuration. However, issues like the number, location and size of these individual flaps need to be addressed based on logic and a suitable performance criteria. Preliminary studies on a 4-bladed hingeless rotor using simple aerodynamic and wake models predict that multiple-flaps are capable of 70-75 percent reduction in hub vibration levels. Numerical studies confirm that multiple-flaps require significantly less control effort as compared to single-flap configuration for obtaining similar reductions in hub vibration levels. Detailed studies include more accurate aerodynamic and wake models for the rotor with TEF’s. A simple and efficient flap control algorithm is chosen from literature and modified for use in multiple-flap configuration to actuate every flap near complete authority. The flap algorithm is computationally efficient and performs creditably at both high and low forward speeds. This algorithm works reasonably well in the presence of zero-mean Gaussian noise in hub load data. It is also fairly insensitive to small changes in plant parameters, such as, blade mass and stiffness properties. The optimal locations of multiple TEF’s for maximum reduction in hub vibration are determined using Response Surface methodology. Piezoelectric stack actuators are the most promising candidates for actuation of full-scale TEF’s on helicopter rotors. A major limitation of piezoelectric actuators is their lack of accuracy due to nonlinearity and hysteresis. The hysteresis in the actuators is modeled using the classical Preisach model (CPM). Experimental data from literature is used to estimate the Preisach distribution function. The hub vibration in this case is reduced by about 81-86 percent from baseline conditions. The performance of the ACF mechanism can be further improved by using an accurate hysteresis compensation scheme. However, using a linear model for the piezoelectric actuator or an inaccurate compensation scheme can lead to deterioration in ACF performance. Finally, bench-top experiments are conducted on a commercially available piezostack actuator (APA500L from CEDRAT Technologies) to study its dynamic hysteresis characteristics. A rate-dependent dynamic hysteresis model based on CPM is used to model the actuator. The unknown coefficients in the model are identified using experiments and validated. Numerical simulations show the importance of modeling actuator hysteresis in helicopter vibration control using TEF’s. A final configuration of multiple flaps is then proposed by including the effects of actuator hysteresis and using the response surface approach to determine the optimal flap locations. It is found that dynamic hysteresis not only affects the vibration reduction levels but also the optimal location of the TEF's.
254

Physics based prediction of aeromechanical loads for the UH-60A rotor

Marpu, Ritu Priyanka 12 April 2013 (has links)
Helicopters in forward flight experience complex aerodynamic phenomena to various degrees. In low speed level flight, the vortex wake remains close to the rotor disk and interacts with the rotor blades to give rise to blade vortex interaction phenomena. In high speed flight, compressibility effects dominate leading to the formation of shocks. If the required thrust is high, the combination of high collective pitch and cyclic pitch variations give rise to three-dimensional dynamic stall phenomena. Maneuvers further exacerbate the unsteady airloads and affect rotor and hub design. The strength and durability of the rotor blades and hub components is dependent on accurate estimates of peak-to-peak structural loads. Accurate knowledge of control loads is important for sizing the expensive swash-plate components and assuring long fatigue life. Over the last two decades, computational tools have been developed for modeling rotorcraft aeromechanics. In spite of this progress, loads prediction in unsteady maneuvers which is critical for peak design loads continues to be a challenging task. The primary goal of this research effort is to investigate important physical phenomena that cause severe loads on the rotor in steady flight and in extreme maneuvers. The present work utilizes a hybrid Navier-Stokes/free-wake CFD methodology coupled to a finite element based multi-body dynamics analysis to systematically study steady level and maneuvering flight conditions. Computational results are presented for the UH-60A rotor for a parametric sweep of speed and thrust conditions and correlated with test data at the NFAC Wind Tunnel. Good agreement with test data has been achieved using the current methodology for trim settings and integrated hub loads, torque, and power. Two severe diving turn maneuvers for the UH-60A recorded in the NASA/Army Airloads Flight Tests Database have also been investigated. These maneuvers are characterized by high load factors and high speed flight. The helicopter experiences significant vibration during these maneuvers. Mean and peak-to-peak structural loads and extensive stall phenomena including an advancing side stall phenomena have been captured by the present analyses.
255

Helicopter Blade Tip Vortex Modifications in Hover Using Piezoelectrically Modulated Blowing

Vasilescu, Roxana 01 December 2004 (has links)
Aeroacoustic investigations regarding different types of helicopter noise have indicated that the most annoying noise is caused by impulsive blade surface pressure changes in descent or forward flight conditions. Blade Vortex Interaction (BVI) is one of the main phenomena producing significant impulsive noise by the unsteady fluctuation in blade loading due to the rapid change of induced velocity field during interaction with vortices shed from previous blades. The tip vortex core structure and the blade vortex miss distance were identified as having a primary influence on BVI. In this thesis, piezoelectrically modulated and/or vectored blowing at the rotor blade tip is theoretically investigated as an active technique for modifying the structure of the tip vortex core as well as for increasing blade vortex miss distance. The mechanisms of formation and convection of rotor blade tip vortices up to and beyond 360 degrees wake age are described based on the CFD results for the baseline cases of a hovering rotor with rounded and square tips. A methodology combining electromechanical and CFD modeling is developed and applied to the study of a piezoelectrically modulated and vectored blowing two-dimensional wing section. The thesis is focused on the CFD analysis of rotor flow with modulated tangential blowing over a rounded blade tip, and with steady mid-plane blade tip blowing, respectively. Computational results characterizing the far-wake flow indicate that for steady tangential blowing the miss distance can be doubled compared to the baseline case, which may lead to a significant reduction in BVI noise level if this trend shown in hover can be replicated in low speed forward flight. Moreover, near-wake flow analysis show that through modulated blowing a higher dissipation of vorticity can be obtained.
256

Dynamic Wake Distortion Model for Helicopter Maneuvering Flight

Zhao, Jinggen 10 April 2005 (has links)
A new rotor dynamic wake distortion model, which can be used to account for the rotor transient wake distortion effect on inflow across the rotor disk during helicopter maneuvering and transitional flight in both hover and forward flight conditions, is developed. The dynamic growths of the induced inflow perturbation across the rotor disk during different transient maneuvers, such as a step pitch or roll rate, a step climb rate and a step change of advance ratio are investigated by using a dynamic vortex tube analysis. Based on the vortex tube results, a rotor dynamic wake distortion model, which is expressed in terms of a set of ordinary differential equations, with rotor longitudinal and lateral wake curvatures, wake skew and wake spacing as states, is developed. Also, both the Pitt-Peters dynamic inflow model and the Peters-He finite state inflow model for axial or forward flight are augmented to account for rotor dynamic wake distortion effect during helicopter maneuvering flight. To model the aerodynamic interaction among main rotor, tail rotor and empennage caused by rotor wake curvature effect during helicopter maneuvering flight, a reduced order model based on a vortex tube analysis is developed. Both the augmented Pitt-Peters dynamic inflow model and the augmented Peters-He finite state inflow model, combined with the developed dynamic wake distortion model, together with the interaction model are implemented in a generic helicopter simulation program of UH-60 Black Hawk helicopter and the simulated vehicle control responses in both time domain and frequency domain are compared with flight test data of a UH-60 Black Hawk helicopter in both hover and low speed forward flight conditions.
257

Detection of Surface Corrosion by Ultrasonic Backscattering

Retaureau, Ghislain J. 22 May 2006 (has links)
Corrosion often occurs in the inner aluminum lining of the HB-53 helicopter external fuel tank, resulting in fuel leaks. This project centers on developing an in-situ ultrasonic inspection technique to detect corroded areas inside the fuel tank. Due to the complexity of the composite structure of the tank, the ultrasonic inspection is carried out from inside the tank using a monostatic backscattering technique. The backscattered field contains information related to the insonified surface properties (surface roughness scales). Numerical predictions are implemented with a simplified model of backscattered intensity (Ogilvy, 1991). Experimental results are obtained on artificially corroded plates, and on the actual fuel tank of the HB-53 helicopter. Signal processing techniques (Envelope Correlation and Inverse Technique) are used to detect corroded surfaces with data obtained with a focused 10 MHz pulsed transducer.
258

Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models

Liu, Haiying 12 December 2007 (has links)
This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airload method is developed in a finite-element method based multibody dynamics formulation, DYMORE. A loose coupling analysis between a CFD code, OVERFLOW-2, and a CSD program, DYMORE, is performed to validate this aerodynamic interface. The ability to accurately capture the wake structure around a helicopter rotor is crucial for rotorcraft performance analysis. In the third part of this thesis, a new representation of the wake vortex structure based on Non-Uniform Rational B-Spline (NURBS) curves and surfaces is proposed to develop an efficient model for prescribed and free wakes. The proposed formulation has the potential to reduce the computational cost associated with the use of the Helmholtz¡¯s law and the Biot-Savart law when calculating the induced flow field around the rotor. An efficient free wake analysis will considerably decrease the computational cost of comprehensive rotorcraft analysis, making the approach more attractive to routine use in industrial settings.
259

Enhancement of aeroelastic rotor airload prediction methods

Abras, Jennifer N. 02 April 2009 (has links)
The accurate prediction of rotor air loads is a current topic of interest in the rotorcraft community. The complex nature of this loading makes this problem especially difficult. Some of the issues that must be considered include transonic effects on the advancing blade, dynamic stall effects on the retreating blade, and wake vortex interactions with the blades, fuselage, and other components. There are numerous codes to perform these predictions, both aerodynamic and structural, but until recently each code has refined either the structural or aerodynamic aspect of the analysis without serious consideration to the other, using only simplified modules to represent the physics. More recent research has concentrated on combining high fidelity CFD and CSD computations to be able to use the most accurate codes available to compute both the structural and the aerodynamic aspects. The objective of the research is to both evaluate and extend a range of prediction methods comparing both accuracy and computational expense. This range covers many methods where the highest accuracy method shown is a delta loads coupling between an unstructured CFD code and a comprehensive code, and the lowest accuracy, but highest efficiency, is found through a free wake and comprehensive code coupling using simplified 2D aerodynamics. From here methods to improve the efficiency and accuracy of the CFD code will be considered through implementation of steady-state grid adaptation, a time accurate low Mach number preconditioning method, and the use of fully articulated rigid blade motion. The exact formulation of the 2D aerodynamic model used in the CSD code will be evaluated, as will efficiency improvements to the free wake code. The advantages of the free-wake code will be tested against a dynamic inflow model. A comparison of all of these methods will show the advantages and consequences of each combination, including the types of physics that each method is able to, or not able to, capture through examination of how closely each method matches flight test data.
260

Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts / Process Improvement of Surface Preparation of Structurally Bonded Helicopter Detail Parts

Tafoya, Keirsten Breann 12 1900 (has links)
The objective of this study was to increase the bond strength at the surface interface of a thin stainless-steel panel for structural bonding on a helicopter. To achieve this objective, six activation methods for applying the coating to the panel in the surface preparation process are presented and explored. Adhesion and roughness tests were conducted to determine which method consistently initiates the etch and improves the bond at the surface. Based on the test results, three methods proved to be effective in initiating the etch. Of the three effective methods, only one method exhibited significantly improved bond strength at the surface interface as well as consistently initiated the etch in solution. The applicability of this method is discussed, and recommendations are presented for further study.

Page generated in 0.0772 seconds