61 |
Development of hematite and cupric oxide photoelectrodes for water splitting tandem cellsCots, Ainhoa 13 September 2019 (has links)
Since the beginning of the Industrial Revolution, the global energy consumption has been continuously increasing, supplied mainly by coal, oil and natural gases. Unfortunately, this consumption is linked to the emission of greenhouse gasses such as CO2 to the atmosphere. For this reason, it is extremely important to look for sustainable and renewable energy sources in order to replace the commonly used fossil fuels. Within the different types of renewable energy sources, solar energy holds by far the largest potential capacity. In this respect, artificial photosynthesis is a promising technology not only to harvest solar energy, but also as a means of storage by producing energy-rich chemical fuels such as H2 from water. The main components of photoelectrochemical water splitting devices are the semiconductor light absorber photoelectrodes and the electrolyte. Chapter 1 reviews the fundamental aspects of photoelectrochemical water splitting and overviews the physics and electrochemistry of semiconductor materials. The second chapter describes the methodologies and techniques employed throughout the thesis. The experimental results are reported from Chapter 3 to 8, focusing on the development and further optimization of two photoelectrodes, concretely hematite and cupric oxide, besides the design and fabrication of tandem cells for standalone water splitting. In the case of hematite photoanodes, the main efforts have focused on its doping to enhance carrier density and mobility as a way of diminishing recombination. The major drawback present in cupric oxide photoelectrodes is their instability against photocorrosion, for this reason, research has focused on protecting them, both by impregnation and adsorption methodologies. Finally, a tandem cell composed by a hematite photoanode and a cupric oxide photocathode was developed. It is worth noting that a polymer electrolyte membrane (PEM) was employed as to facilitate upscaling and diminish the corrosion observed employing the typical acidic or basic liquid electrolytes.
|
62 |
The Effects of Gas Composition, Gas Flow Rate and Reaction Temperature on the Reduction Behaviour of Fixed Beds of Hematite PelletsRounsevell, John Marshall 05 1900 (has links)
<p> An Experimental investigation has been conducted to determine the effects on degree of reduction and efficiency of utilization of gases of changes in the levels of several variables when reducing fixed beds of commercial hematite pellets. The effects on reduction behaviour of changes in the levels of reducing gas composition and flow rate, and reaction temperature, were determined by graphical and numerical techniques.</p> / Thesis / Master of Engineering (MEngr)
|
63 |
The Fe-oxides (mineralogical, chemical, and textural) variation in the Leveäniemi deposit using micro-analytical tools for unraveling of primary features and metamorphic recrystallisationLarsson, Adrian January 2022 (has links)
The Leveäniemi iron oxide apatite (IOA) deposit, mined by LKAB, is located in Norrbotten, northern Sweden. The deposit has a partially more complex mineralogy than the neighbouring and more famous IOA deposits of Kiirunavaara and Malmberget. The Leveäniemi deposit contains comparatively more ore containing both magnetite and hematite but also maghemite and with slightly different trace element chemistry of the iron oxide minerals. Hematite is currently not considered a valuable mineral in the Svappavaara mineral processing and in the magnetite concentrate titanium and vanadium are considered to be penalty elements. Ore samples were collected from selected drill cores and from these polished thin sections were prepared that were investigated by optical microscopy, EPMA, and FE-SEM-EDS. Investigations focused on iron oxide mineralogy and mineral chemistry with special consideration to titanium and vanadium as those elements are considered deleterious in subsequent blast furnace or direct reduction processes. Investigations revealed that magnetite is the predominant mineral with secondary hematite being the second most abundant iron oxide mineral. In the investigated samples vanadium concentration in magnetite ranges from 0.12 to 0.32% V2O3 with higher concentrations in the southern part of the deposit. No such conclusions regarding spatial distribution could be done for titanium. Furthermore, the investigations indicated that alteration from primary magnetite to secondary hematite does not significantly affect the trace element chemistry of the minerals. Titanium in iron oxides occurs as either inclusions or lamellae of titanium oxide minerals. Vanadium in iron oxides occur as a substitution element and does not occur in stochiometric vanadium minerals. It is considered unfeasible to lower the content of these deleterious elements by physical separation methods. / Leveäniemi är en järnoxid-apatitfyndighet (IOA) i Norrbotten som bryts av LKAB. Fyndigheten har en delvis mer komplex mineralogi än de närliggande och mer kända IOA-fyndigheterna Kiirunavaara och Malmberget. Leveäniemifyndigheten innehåller jämförelsevis mer malm innehållande både magnetit och hematit men även maghemit samt med något annorlunda spårämneskemi i järnoxidmineralen. Hematit anses inte i nuläget vara ett värdemineral i Svappavaaras malmförädling och i magnetitekoncentratet anses titan och vanadin utgöra straffelement. Malmprov togs från utvalda borrkärnor och från dessa tillverkades polerade tunnslip som undersöktes med optisk mikroskopering, EPMA och FE-SEM-EDS. Undersökningarna var fokuserade på järnoxidernas mineralogi och mineralkemi med speciellt fokus på titan och vanadin då grundämnena anses vara skadliga i efterföljande masugns- eller direktreduktionsprocesser. Undersökningarna visade att magnetit är det dominerade mineralet med sekundär hematit som det näst vanligaste förekommande järnoxidsmineralet. I de undersökta proven varierade vanadinhalten från 0,12% till 0,32% V2O3 med högre halter i fyndigheten södra delar. Inga liknande slutsatser angående rumsliga fördelningen av titan kunde göras. Vidare så indikerade undersökningarna att omvandling från primär magnetit till sekundär hematit inte nämnvärt påverkar spårämneskemin i mineralen. Titan i järnoxider förekommer antingen som inneslutning eller lameller av titanoxidsmineral. Vanadin i järnoxider förekommer som ett substitutionselement och förekommer inte som stökiometriska vanadinmineral. Det anses inte vara tekniskt eller ekonomiskt möjligt att sänka halterna av dessa skadliga grundämnen med hjälp av fysiska separationsmetoder.
|
64 |
Investigation into the Stability of Synthetic Goethite after Dynamic Shock CompressionJenkins, Nicholas Robert 21 July 2023 (has links)
No description available.
|
65 |
Surface Complexes Of Lead And Organic Acids At The Hematite / Water InterfaceNoerpel, Matthew Robet January 2015 (has links)
No description available.
|
66 |
High gradient magnetic separation of hematite from lead sulphate and silver in the residue of the sulphation roast-leach-electrowin processEspinosa Gómez, Rodolfo. January 1981 (has links)
No description available.
|
67 |
Bioreduction of Hematite Nanoparticles by Shewanella oneidensis MR-1Bose, Saumyaditya 09 January 2007 (has links)
A dissertation is presented on the bioreduction of hematite (α-Fe2O3) nanoparticles. The study shows that an alternative extracellular electron transfer mechanism other than the classical 'direct-contact' mechanism may be simultaneously employed by Shewanella oneidensis MR-1 during solid-phase metal reduction. This conclusion is supported by analysis of the bioreduction kinetics of hematite nanoparticles coupled with microscopic investigations of cell-mineral interactions. The reduction kinetics of metal-oxide nanoparticles were examined to determine how S. oneidensis utilizes these environmentally-relevant solid-phase electron acceptors. Nanoparticles involved in geochemical reactions show different properties relative to larger particles of the same phase, and their reactivity is predicted to change as a function of size. To demonstrate these size-dependent effects, the surface area normalized reduction rates of hematite nanoparticles by S. oneidensis MR-1 with lactate as the sole electron donor were measured. As evident from whole cell TEM analysis, the mode of nanoparticle adhesion to cells is different between the more aggregated, pseudo-hexagonal to irregular shaped 11 nm, 12 nm, 99 nm and the less aggregated 30 nm and 43 nm rhombohedral particles. The 11 nm, 12 nm and 99 nm particles show less cell contact and coverage than the 30 nm and 43 nm particles but still show significant rates of reduction. This leads to the provisional speculation that S. oneidensis MR-1 employs a pathway of indirect electron transfer in conjunction with the direct-contact pathway, and the relative importance of the mechanism employed depends upon aggregation level and the shape of the particles or crystal faces exposed. In accord with the proposed increase in electronic band-gap for hematite nanoparticles, the smallest particles (11 nm) exhibit one order of magnitude decrease in reduction when compared with larger (99 nm) particles, and the 12 nm rates fall in between these two. This effect may also be due to the passivation of the mineral and cell surfaces by Fe(II), or decreasing solubility due to decrease in size. / Ph. D.
|
68 |
The electronic structure of galena and hematite surfaces: applications to the interpretations of STM images, XPS spectra and heterogeneous surface reactionsBecker, Udo 24 October 2005 (has links)
Scanning tunneling microscopy (STM) images and scanning tunneling spectroscopy (STS) spectra of galena (PbS) and hematite (a-Fe203) were calculated using ab-initio methods in order to interpret experimental images and spectra that were taken in previous studies. These calculations have helped to understand which states of the mineral surfaces were imaged depending on the bias voltage and tip-sample separation. The computational results also gave insight in electron transfer processes that take place during surface adsorption/oxidation/reduction processes. In this context, different oxidation (using O₂ and ferric iron as oxidants) and gold adsorption/reduction mechanisms on galena were evaluated at an atomic level. On hematite, the main emphasis was determining the differences in the local electronic structure of specific sites above the surface and the electronic structure of the bulk. Hereby, step sites turned out to have an increased local density of states at certain electron binding energies that are absent on flat surfaces. states can explain the highly increased reactivity of step sites as compared to terraces. X-ray photoelectron spectra (XPS) were calculated to compare the photoelectron peaks of the calculated specific surface structures (that do not have a bulk equivalent) with experimentally obtained XPS spectra. Most of the calculated peak chemical shifts coincided with those that were found in experiments and that were previously interpreted in terms of known bulk structures. Therefore, it can be inferred that the conventional way of interpreting XPS spectra might be incomplete if specific surface structures are neglected. In order to understand step velocities on a gypsum (010) surface, step energies of different step directions were calculated using an ab-initio approach. An approximately linear relationship was found between the calculated step energies and the experimentally determined step velocities. / Ph. D.
|
69 |
Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogèneBouhjar, Feriel 27 July 2018 (has links)
Tesis por compendio / El hidrógeno es un portador de energía que ya ha demostrado su capacidad para reemplazar el
petróleo como combustible. Sin embargo, los medios de producción actualmente en uso
siguen siendo altamente emisores de gases de efecto invernadero. La foto-electrólisis del agua
es un proceso que, a partir de la energía solar, separa los compuestos elementales del agua
como el hidrógeno y el oxígeno utilizando un semiconductor con propiedades físicas
adecuadas. La hematita (¿-Fe2O3) es un material prometedor para esta aplicación debido a su
estabilidad química y su capacidad para absorber una porción significativa de la luz (con una
banda prohibida entre 2.0 - 2.2 eV). A pesar de estas propiedades ventajosas, existen
limitaciones intrínsecas al uso de óxido de hierro para la descomposición fotoelectroquímica
del agua. La primera restricción es la posición de su banda de conducción que es menor que el
potencial de reducción de agua. Esta limitación se puede superar mediante la adición en serie
de un segundo material, en tándem, que absorberá una parte complementaria del espectro
solar y llevar a los electrones a un nivel de energía más alto que el potencial para la liberación
de hidrógeno. El segundo obstáculo proviene del desacuerdo entre la corta longitud de
difusión de los portadores de carga y la profundidad de penetración larga de la luz. Por lo
tanto, es necesario controlar la morfología de los electrodos de hematita en una escala de
tamaño similar a la longitud de transporte del orificio.
En esta tesis, se introduce un nuevo concepto para mejorar el rendimiento fotoelectroquímico
de la hematita. Usando el método hidrotermal depositamos capas delgadas de hematita dopada
con Cr en sustratos de vidrio conductivo. También se ha preparado por medios
electroquímicos una heterounión del tipo p-CuSCN/n-Fe2O3 depositando secuencialmente una
capa de ¿-Fe2O3 y una película de CuSCNsobre sustratos de FTO (SnO2: F).Finalmente, se ha
preparado células solares de perovskitas y óxido de hierro. Para ello se depositó una capa
delgada, densa y uniformede óxido de hierro (¿-Fe2O3) como capa de transporte de electrones
(ETL) en lugar de dióxido de titanio (TiO2) que se utiliza convencionalmente en las células
fotovoltaicas perovskitastipoCH3NH3PbI3 (SGP). Este último dispositivo mostró un aumento
en la fotocorriente del 20% y un IPCE30 veces mayor que la hematita simple, lo que sugiere
una mejor conversión de las longitudes de onda por encima de 500 nm.
Palabras clave:
Fotoelectroquímica, división de agua, producción de hidrógeno, evolución de oxígeno,
semiconductores de óxido de metal, hematita, óxido de hierro, nanoestructuras / Hydrogen is an energy carrier that has already demonstrated its ability to replace oil as a fuel.
However, the means of production currently used remain highly emitting greenhouse gases.
Photo-electrolysis of water is a process that uses solar energy to separate the elemental
compounds of water such as hydrogen and oxygen using a semiconductor with adequate
physical properties. Hematite (¿-Fe2O3) is a promising material for this application because of
its chemical stability and ability to absorb a significant portion of light (with a band-gap
between 2.0 - 2.2 eV). Despite these advantageous properties, there are intrinsic limitations to
the use of iron oxide for the photoelectrochemical cracking of water. The first constraint is the
position of its conduction band, which is lower than the water reduction potential. This
constraint can be overcome by the addition in series of a second material, in tandem, which
will absorb a complementary part of the solar spectrum and bring the electrons to a higher
energy level than the potential of hydrogen release. The second obstacle comes from the
disagreement between the short diffusion length of the charge carriers and the long light
penetration depth. It is therefore necessary to control the morphology of the hematite
electrodes on a scale of similar size to the transport length of the hole.
In this thesis a new concept is introduced to improve the photoelectrochemical performances.
Using the hydrothermal method we deposited thin layers of Cr-doped hematite on conductive
glass substrates. We also electrochemically prepared a p-CuSCN / n-Fe2O3 heterojunction by
sequentially depositing ¿-Fe2O3 and CuSCN films on FTO (SnO2: F) substrates. Finally, we
have used uniform and dense thin layers of iron oxide (¿-Fe2O3) as an electron transport layer
(ETL) in place of titanium dioxide (TiO2) conventionally used in photovoltaic cells based on
perovskites CH3NH3PbI3 (PSC). This latter concept showed a 20% increase of the
photocurrent and an IPCE 30 times greater than the simple hematite, suggesting better
conversion of high wavelengths (> 500 nm).
Keywords:
Photoelectrochemistry, Water Splitting, Hydrogen Production, Oxygen Evolution, MetalOxide
Semiconductors, Hematite, Iron Oxide, Nanostructures, Surface. / L'hidrogen és un proveïdor d'energia que ja ha demostrat la seva capacitat per reemplaçar el
petroli com a combustible, però els mitjans de producció actuals continuen essent fortament
emissors dels gasos responsables d'efecte hivernacle. La fotoelectròlisi de l'aigua és un procés
que, a partir de l'energia solar, separa els compostos elementals d'aigua com l'hidrogen i
l'oxigen utilitzant un semiconductor amb propietats físiques adequades. La hematita (¿-Fe2O3)
és un material prometedor per a aquesta aplicació a causa de la seva estabilitat química i
capacitat d'absorbir una porció significativa de la llum (amb un gap entre 2,0 i 2,2 eV).
Malgrat aquestes propietats avantatjoses, hi ha limitacions intrínseques per a l'ús d'òxid de
ferro per a la descomposició fotoelectroquímica de l'aigua. La primera restricció és la posició
de la seva banda de conducció que és inferior al potencial de reducció d'aigua. Aquesta
limitació es pot superar mitjançant l'addició en sèrie d'un segon material, en tàndem, que
absorbirà una part complementària de l'espectre solar i portar els electrons a un nivell
d'energia més alt que el potencial per a l'alliberament d'hidrogen. El segon obstacle prové del
desacord entre la curta durada de la difusió dels portadors de càrrega i la llarga profunditat de
penetració de la llum. Per tant, és necessari controlar la morfologia dels elèctrodes d'hematita
en una escala de mida similar a la longitud del forat del transport.
En aquesta tesi, es presenta un nou concepte per millorar el rendiment fotoelectroquímic.
Mitjançant el mètode hidrotermal es van dipositar capes primes de hematita Cr-doped sobre
substrats de vidre conductor. També s'han preparat electroquímicamentheterounions de tipus
p-CuSCN/n-Fe2O3 dipositant seqüencialment una capa de ¿-Fe2O3 i altra de CuSCN sobre
substrats FTO (SnO2: F).Finalment, s'han produït cél·lules solars de perovskitesi óxid de
ferro. Per això es va depositaruna capa prima,densai uniforme d'òxid de ferro (¿-Fe2O3) com
a capa de transport d'electrons (ETL) en lloc de diòxid de titani (TiO2) que s'utilitza
convencionalment en les cèl·lules fotovoltaiques de perovskita híbrida del tipus CH3NH3PbI3
(SGP). Aquest últim dispositiu va mostrar un augment del fotocorrent del 20% i una IPCE30
vegades superior a la hematita simple, la qual cosa suggereix una millor conversió a longitud
d'ones per sobre de 500 nm.
Paraules clau:Fotoelectroquímica, divisió d'aigua, producció d'hidrogen, evolució d'oxigen,
semiconductors d'òxids metàl·lics, hematita, òxid de ferro, nanoestructures. / Bouhjar, F. (2018). Preparation et performance d'une cellule photocatalytique à base d'hématite pour la génération d'hydrogène [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106345 / Compendio
|
70 |
Mechanochemical Reactions and Strengthening in Epoxy-Cast Aluminum Iron-Oxide MixturesFerranti, Louis, Jr. 02 November 2007 (has links)
This investigation is focused on the understanding of mechanical and chemical reaction behaviors of stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in epoxy. Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release energy while providing structural strength. The structural and energetic response of this material system is investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The mechanical response and reaction behavior are closely interlinked through deformation characteristics. It is, therefore, desirable to understand the deformation behavior up to and beyond failure and establish the necessary stress and strain states required for initiating chemical reactions.
The composite s behavior has been altered by changing two main processing parameters; the reactants particle size and the relative volume fraction of the epoxy matrix. This study also establishes processing techniques necessary for incorporating nanometric-scale reactants into energetic material systems. The mechanochemical behavior of epoxy-cast Al+Fe2O3 composites and the influence of epoxy volume fraction have been evaluated for a variety of loading conditions over a broad range of strain rates, which include low-strain rate or quasistatic loading experiments (10-4 to 10-2 1/s), medium-strain rate Charpy and Taylor impacts (103 to 104 1/s), and high-strain rate parallel-plate impacts (105 to 106 1/s). In general, structural strength and toughness have been observed to improve as the volume fraction of epoxy decreases, regardless of the loading strain rate regime explored. Hugoniot experiments show damage occurring at approximately the same critical impact stress for compositions prepared with significantly different volume fractions of the epoxy binder phase. Additionally, Taylor impact experiments have indicated evidence for strain-induced chemical reactions, which subject the composite to large shear accompanied by temperature increase and associated softening, preceding these reactions.
Overall, the work aims to establish an understanding of the microstructural influence on mechanical behavior and chemical reactivity exhibited by epoxy-cast Al+Fe2O3 materials when exposed to high stress and high-strain loading conditions. The understanding of fundamental aspects and the results of impact experiment measurements provide information needed for the design of structural energetic materials.
|
Page generated in 0.0387 seconds