• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 209
  • 68
  • 59
  • 13
  • 11
  • 8
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 736
  • 605
  • 416
  • 376
  • 275
  • 180
  • 170
  • 149
  • 129
  • 92
  • 88
  • 77
  • 69
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Clonality of normal and malignant hemopoiesis

Turhan, Ali G January 1990 (has links)
In the normal adult human, hemopoiesis appears to be maintained by the simultaneous activity of many stem cell-derived clones. Conversely, most examples of human myeloid malignancies have been shown to represent clonal populations arising as a result of the unregulated expansion of a single transformed hemopoietic stem cell. The limits of the proliferative capacity of normal hemopoietic stem cells in humans and their persistence in hemopoietic malignancies have, however, not been extensively Investigated. One of the most likely reasons for this is the lack, until very recently, of a widely applicable method to analyze the clonality status of human cell populations. Methylation analysis of two polymorphic genes. HPRT and PGK, now allows such studies to be performed in approximately 50 % of females. The possibility that normal human hemopoietic stem cells might have the capacity to mimic the behaviour of some transformed stem cells by generating clones of progeny that could dominate the entire hemopoietic system was then examined. Such a phenomenon has been well documented in animal models of marrow cell transplantation. I therefore undertook an analysis of all allogeneic marrow transplants performed over a 1 to 1-1/2 year period where the genotype of the donor made clonality analysis using the HPRT or PGK systems possible. Using this approach, I obtained evidence in two patients suggesting that a single or, at most, a very small number of normal primitive hemopoietic stem cells were able to reconstitute the hemopoietic system. In one case the data suggested that such reconstitution was likely to have derived from a stem cell with both lymphopoietic and myelopoietic potential. However, in all other cases hemopoiesis in the transplant recipient was found to be polyclonal. Such findings indicate that clonal dominance in the hemopoietic system is not sufficient to infer that a genetically determined neoplastic change has occurred. In addition, these findings have implications for the design of future gene therapy protocols. The same methodology was also applied to investigate the clonality of different hemopoietic cell populations in patients with chronic myelogenous leukemia (CML) and essential thrombocytosis (ET). In both of these myeloproliferative disorders, the neoplastic clone produces terminally differentiated progeny that appear minimally different from normal. Data from the CML studies confirmed the non-clonal nature of the cells emerging in long-term CML marrow cultures. Similarly, patients transplanted with cultured autologous marrow were shown to undergo polyclonal and bcr-negative reconstitution of their hemopoietic system. Analysis of a series of patients with a clinical diagnosis of ET showed that polyclonal hemopoiesis in the presence of an amplified neoplastic clone is not a rare event in this disorder, and that clonality results do not always correlate with other neoplastic markers associated with myeloproliferative diseases in general. Another example of polyclonal hemopoiesis in the presence of an amplified neoplastic clone was demonstrated in a patient with Ph¹-positive ALL whose disease appeared to have originated in a lymphoid-restricted stem cell. The studies described in this thesis reveal a level of complexity of normal and neoplastic stem cell dynamics not previously documented. They highlight the need for more precise information about the molecular basis of regulatory mechanisms that govern hemopoietic cell proliferation and survival at every level of differentiation. Finally they support the accumulating evidence that acquisition of full malignant potential requires several additive genetic changes first postulated many years ago as the somatic mutation theory of carcinogenesis. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
132

The relationship between the blood flow and the marrow cavity pressure of bone

Hawk, Hubert Edmund January 1971 (has links)
An experimental animal model was developed to study and define the relationship between the blood flow and the marrow cavity pressure of bone. The study was carried out in 24 rabbits and 32 dogs under nembutol anesthesia. A multichannel physiograph was used to record simultaneously the systemic blood pressure, bone blood flow, marrow cavity pressure of bone and time sequence. The systemic blood pressure was measured by cannulating a brachial or carotid artery. The bone blood flow was measured by cannulating the nutrient vein and/or the nutrient artery. The marrow cavity pressure was measured by inserting a steel cannula through a drill hole in the cortex into the marrow cavity. The bones studied were mainly the tibia and femur. During the normal control condition, the marrow cavity pressure was found to have a wide range from animal to animal. In the rabbits, the range was from 20 to 60 mm. Hg. (15 to 50 percent of the systemic blood pressure). In the dogs, it ranged from 40 to 120 mm. Hg. (20 to 90 percent of the systemic blood pressure). However, the systemic blood pressure, intramedullary pressure and nutrient venous outflow were remarkably constant in a control period, therefore, their changes under experimental conditions were readily recordable. Various factors affecting bone circulation were studied. If the femoral vein is occluded the marrow cavity pressure rises and the nutrient venous outflow increases indicating venous congestion of bone. Nutrient artery occlusion causes a sharp fall in marrow cavity pressure coupled with a marked decrease in the nutrient venous outflow. Adrenalin and noradrenalin intravenous infusions produce a fall in marrow cavity pressure coupled with a decreased bone blood flow, despite an elevation in the systemic blood pressure. Isoproterenol hydrochloride generally causes a fall in the systemic blood pressure, widening of the pulse pressure, a fall in the marrow cavity pressure and a decrease in the nutrient venous outflow. Electrical sympathetic stimulation produces a fall in the marrow cavity pressure and a decrease in bone blood flow. Lumbar sympathectomy causes a rise in the marrow cavity pressure and an increase in the bone blood flow. Skeletal muscle contraction produces bone venous congestion with elevation of the marrow cavity pressure and increased nutrient venous outflow. Muscular relaxation causes a momentary sharp fall in the marrow cavity pressure to sub control levels before returning to the normal pressure. It is concluded that the marrow cavity pressure is bone blood flow dependent and reflects well the changes in the hemodynamics of bone. The narrow pressure rises if the arterial blood supply to bone increases or the venous congestion occurs in bone. The marrow pressure falls if the arterial blood supply to bone decreases or the venous drainage of bone is facilitated. / Surgery, Department of / Medicine, Faculty of / Graduate
133

Extrinsic regulation of Hematopoietic Stem Cells in the fetal liver

Lee, Yeojin January 2021 (has links)
Hematopoietic stem cells (HSCs) lie at the top of the hematopoietic hierarchy and give rise to all mature blood cells. They are tightly regulated not only by cell-intrinsic but also cell-extrinsic mechanisms that allow HSCs to respond to dynamic physiological demands of the body. HSCs build the hematopoietic system during development and maintain homeostasis in adults by changing their properties according to different needs. A niche is the microenvironment where HSCs reside and receive extrinsic regulation. Understanding the niche is crucial for elucidating how HSCs are regulated by extrinsic cues. During mammalian development, HSCs pass through several different niches, among which the liver is the major site for their rapid expansion and maturation. The fundamental question of what cells constitute the fetal liver niche in vivo remains largely elusive. It is also unclear whether and how cell-extrinsic maintenance mechanisms accompany changes in HSC properties during ontogeny. Here, I genetically dissected the cellular components of the HSC niche in the fetal liver by identifying the cellular source of a key cytokine, stem cell factor (SCF). In addition, I found that HSCs switch to depend on thrombopoietin (TPO), another key factor, during ontogeny and uncovered the mechanism by which HSCs gain this dependence.
134

The Role of N6-methyladenosine RNA Methylation in the Regulation of Hematopoietic Stem Cells

Lee, Heather January 2020 (has links)
Hematopoietic stem cells (HSCs) give rise to all blood cells and are characterized by their ability for life-long self-renewal and multilineage differentiation. HSC function is regulated by complex cell-intrinsic and -extrinsic pathways, but these regulatory mechanisms are not completely understood. Recent work has demonstrated that the epitranscriptional modification N6-methyladenosine (m6A) has important roles in the regulation of many physiologic and pathologic processes in various cell types, but it was previously unknown if and how m6A may regulate adult HSC function. In this work, I uncover the role for m6A in HSC regulation, both cell-intrinsically in regulating HSC differentiation and cell–extrinsically by regulating the formation the HSC bone marrow niche.
135

Interactions between the haematopoietic stem cell and the myeloid microenvironment in aplastic anaemia

Novitzky, Nicolas 10 July 2017 (has links)
In patients with aplastic anaemia that respond to immunosuppressive therapy, quantitative, morphological and functional haematologic derangement have been reported. To explain these findings, abnormalities in the marrow stroma or the stem cell have been postulated. To define the relative contribution of each of the latter, the integrity of the bone marrow from sixteen patients that responded to anti-lymphocyte globulin and high dose methyl prednisolone was compared to normal individuals. Bone marrow mononuclear cells were divided into two fractions. From the first, stroma was cultured in aMEM containing 12.5% of both horse and foetal calf serum and 10-5 M hydrocortisone at 37° C in 5% CO2 in 90% humidity. The medium was changed weekly. Upon confluence, these stromal layers were studied morphologically and with cytospin preparations stained with Sudan black, 0 red oil, alkaline and acid phosphatases. The remainder was monocyte and lymphocyte depleted, CD 34+ progenitors were selected with paramagnetic beads and the population morphologically and immunophenotypically defined. To determine the functional status, control or patient CD 34+ progenitors, were suspended for two hours on normal or aplastic stroma for adherence to take place. The non-adhesive fraction was decanted by standardised washing and cultured for fourteen days in the presence of PHA-conditioned medium in the CFU-gm assay. Strama-adherent progenitors were covered with 0.3% agar and cultured for five days. Aggregates with more than twenty cells were scored (CFU-bl). The remaining CD 34+ cells were cultured in the mixed colony assay with combinations of recombinant cytokines belonging to the G protein super-family and the tyrosine kinase group in dose response studies. Light density cells from patients with treated aplasia contained significantly fewer CD 34+ cells than those present in the control suspensions (mean 0.65%, SD 0.35% vs 1.62%, SD 1.4%; p= 0.002). Normal and aplastic stroma became confluent at three and four weeks. There was no difference on the morphology or the cytochemical stains between the two groups. Functionally, aplastic bone marrow stroma supported CFU-bl formation no differently from normal layers. However, CD 34+ precursors from the patients cultured on control stroma resulted in significantly fewer CFU-bl (p= 0.0002,) and CFU-gm (p= 0.0009). This work provides original evidence supporting the reduced clonogenicity of the corresponding populations of CFU-bl from patients with aplasia is unrelated to attachment to the stroma, but intrinsic to the CD 34+ cells. Moreover, this study shows for the first time that exposure of these progenitors to growth factors belonging to the G protein and tyrosine kinase receptor families have defective responses, correctable only at supra physiological concentrations, while effects on combinations containing c-kit ligand, appear preserved. Following immunosuppressive therapy, the bone marrow is repopulated by a hypoproliferative progenitor cell population which responds suboptimally to physiological cytokine stimulation. This suggests that abnormal interactions between receptors and their ligands or alterations in the signal transduction for cell division by the cytokines belonging to the G superfamily lead to suboptimal growth.
136

Regulation Of Hematopoietic Stem Cells By Lipid and Mitochondrial Metabolism

Sharma, Devyani 15 June 2020 (has links)
No description available.
137

Nutritional Status of Allogeneic Hematopoietic Stem Cell Transplant Recipients and Post-transplant Outcomes

Szovati, Stephanie 24 May 2022 (has links)
No description available.
138

Hematopoietic Stem Progenitor Cells Prevent Chronic Stress-Induced Lymphocyte Apoptosis

Zhou, Yu, Li, Hui, Siddiqui, Nausheen, Caudle, Yi, Zhang, Haiju, Elgazzar, Mohamed, Yin, Deling 15 August 2017 (has links)
Physical or psychological chronic stress can suppress the immune system. However, the mechanisms remain to be elucidated. We investigated the effect of hematopoietic stem-progenitor cells (HSPCs) on chronic stress-induced the alterations of immune responses. We demonstrate that HSPCs prevents stress-induced lymphocyte apoptosis. Moreover, we also demonstrate that the protective effect of HSPCs on stress-induced lymphocyte reduction exerts by steroid hormones. Furthermore, we reveal that chronic stress-induced T cell-mediated immune responses contributes to the protective effect of HSPCs. These results indicate that HPSCs might offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
139

Role of STAT3 and SDF-1/CXCL 12 in mitochondrial function in hematopoietic stem and progenitor cells

Messina-Graham, Steven V. 10 August 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mitochondria are the major ATP producing source within cells. There is increasing data supporting a direct involvement of mitochondria and mitochondrial function in regulating stem cell pluripotency. Mitochondria have also been shown to be important for hematopoietic stem and progenitor cell function. Hematopoietic stem cells have lower numbers of mitochondria (mass), lower mitochondrial membrane potential, and lower ATP levels as compared to other blood cell types. Mitochondria play an important role in hematopoietic stem and progenitor cells, thus we investigated the role of the chemokine, SDF-1/CXCL12, in mitochondrial function in hematopoietic stem and progenitor cells using an SDF-1/CXCL12 transgenic mouse model. We found increased mitochondrial mass is linked to CD34 surface expression in hematopoietic stem and progenitor cells, suggesting that mitochondrial biogenesis is linked to loss of pluripotency. Interestingly these hematopoietic progenitor cells have low mitochondrial membrane potential and these mitochondrial become active prior to leaving the progenitor cell compartment. We also tested the ability of SDF-1/CXL12 to modulate mitochondrial function in vitro by treating the human leukemia cell line, HL-60, and primary mouse lineage- bone marrow cells with SDF-1/CXCL12. We found significantly reduced mitochondrial function at two hours while mitochondrial function was significantly increased at 24 hours. This suggests that SDF1/CXCL12 regulates mitochondrial function in a biphasic manner in a model of hematopoietic progenitors and immature blood cells. This suggests SDF1/CXCL12 may play a role in regulating mitochondrial function in hematopoiesis. We also investigated STAT3 in hematopoietic stem and progenitor cells. Mitochondrial STAT3 plays an essential role in regulating mitochondrial function. By using a knockout (Stat3-/-) mouse model we found that Stat3-/- hematopoietic progenitor cells had reduced colony forming ability, slower cell cycling status, and loss of proliferation in response to multi-cytokine synergy. We also found mitochondrial dysfunction in Stat3-/- hematopoietic stem and progenitor cells. Our results suggest an essential role for mitochondria in HSC function and a novel role for SDF-1/CXCL12 and STAT3 in regulating mitochondrial function in hematopoietic stem and progenitor cells.
140

Mutant P53 in pre-leukemic hematopoietic stem cells and the pathogenesis of Myelodysplastic Syndrome

Chen, Sisi 29 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Myelodysplastic syndrome (MDS) is a clonal disease arising from mutated hematopoietic stem cells (HSCs). MDS stem cells originate from pre-leukemic HSCs, which have enhanced competitive advantage over wild-type (WT) HSCs but normal differentiation capacity. Recently, acquired somatic gain-of-function (GOF) TP53 mutations were identified in the blood of aged healthy individuals as well as in patients with MDS. However, the role of GOF TP53 mutations in clonal hematopoiesis and the pathogenesis of MDS is largely unknown. Based upon our previous studies and clinical findings, I hypothesized that GOF mutant p53 drives the development of pre-leukemic HSCs with enhanced competitive advantage, leading to clonal expansion and the pathogenesis of MDS. To test my hypothesis, I examined HSC behaviors in young p53+/+ and p53R248W/+ mice. I discovered that p53R248W enhances the repopulating potential of HSCs without affecting terminal differentiation. I also found that GOF mutant p53 protects HSCs from genotoxic stress and promotes their expansion. To investigate the role of mutant p53 in the pathogenesis of hematological malignancies, I monitored disease development in p53+/+ and p53R248W/+ mice and observed that some mutant p53 mice develop MDS during aging. Therefore, I demonstrated that GOF mutant p53 enhances the repopulating potential of HSCs and drives the development of pre-leukemic HSCs, predisposing aged mutant p53 mice to MDS development. Mechanistically, I found that mutant p53 increases the chromatin accessibility to genes important for HSC maintenance, including pluripotent gene Sox2 and chemokine gene Cxcl9. By performing biochemical experiments, I discovered that GOF mutant p53, but not WT p53, interacts with histone methyltransferase EZH2 and enhances histone H3 lysine 27 trimethylation (H3K27me3) at genes, including Mef/Elf4 and Gadd45g, that negatively regulate HSC self-renewal. Collectively, these findings demonstrated that GOF mutant p53 drives pre-leukemic HSC development through modulating epigenetic pathways. Thus, our studies have uncovered novel mechanistic and functional links between GOF mutant p53 and epigenetic regulators in pre-leukemic HSCs. This research may identify epigenetic regulator EZH2 as a novel target for the prevention and treatment of MDS patients with TP53 mutations.

Page generated in 0.0811 seconds