• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 209
  • 68
  • 59
  • 13
  • 11
  • 8
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 736
  • 605
  • 416
  • 376
  • 275
  • 180
  • 170
  • 149
  • 129
  • 92
  • 88
  • 77
  • 69
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.
102

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.
103

Regulating Emergency Granulopoiesis

Cain, Derek Wilson January 2010 (has links)
<p>Normally, neutrophil pools are maintained by "steady-state" granulopoiesis. Infections and inflammation, however, trigger neutrophilias that are supported by a hematopoietic program of accelerated granulopoiesis known as "emergency" granulopoiesis. Steady-state and emergency granulopoiesis are thought to depend on distinct members of the CCAAT enhancer binding protein (C/EBP) family of transcription factors, yet the extracellular cues that determine these developmental pathways are unclear. I hypothesize that inflammation elicits IL-1 which acts directly on hematopoietic progenitor cells for the induction of emergency granulopoiesis. Indeed, IL-1RI<super>-/-</super> mice fail to mount reactive neutrophilias in response to adjuvant-induced inflammation. Analysis of this specific impairment revealed an unanticipated role for IL-1RI in supporting increased proliferation by granulocyte/macrophage progenitors (GMP) and, surprisingly, more primitive multipotent progenitors (MPP) and hematopoietic stem cells (HSC). Whereas IL-1 drives HSC proliferation directly <italic>in vitro</italic>, inflammation induces comparable rates of proliferation in IL-1RI deficient and -sufficient HSC, MPP, and GMP in mixed chimeric mice. Thus, IL-1RI signals play a necessary, but indirect role in the support of alum-induced neutrophilias by expanding both pluripotent and myeloid progenitor compartments to accelerate granulopoiesis.</p><p>The lack of alum-induced neutrophilia in IL-1RI<super>-/-</super> mice is due to defective mobilization of bone marrow (BM) neutrophils and impaired proliferation of hematopoietic stem and progenitor cells (HSPC). Coincident defects in neutrophil mobilization and HSPC proliferation suggest that the trigger for emergency granulopoiesis might be the exhaustion of neutrophil compartments rather than inflammatory inductions of growth factors. Consistent with this hypothesis, non-inflammatory reductions in BM neutrophil numbers elicit granulopoietic responses similar to those induced by adjuvant. Alum mobilizes BM neutrophils via G-CSF, but increased HSPC proliferation results from a density-dependent mechanism that is only partially dependent on G-CSF. Notably, C/EBP&beta;, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC, but plays a role in the terminal differentiation of neutrophils. These observations indicate that the draining of BM neutrophil pools is sufficient to activate a latent, homeostatic mechanism of accelerated granulopoiesis. I propose a common model for the regulation of neutrophil production that explains both steady-state and emergency granulopoiesis through negative feedback.</p> / Dissertation
104

Genetic diversity, evolution, and fitness of infectious hematopoietic necrosis virus within an endemic focus in rainbow trout aquaculture /

Troyer, Ryan M. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 130-160).
105

Regulation of hematopoietic stem cell migration and function

Durand, Ellen Marie 04 June 2015 (has links)
Hematopoietic stem cell transplantation (HSCT) is an effective treatment for blood disorders and autoimmune diseases. Following HSCT, these cells must successfully migrate to the marrow niche and replenish the blood system of the recipient. This process requires both non-cell and cell-autonomous regulation of hematopoietic stem and progenitor cells (HSPCs). A transgenic reporter line in zebrafish allowed the investigation of factors that regulate HSPC migration and function. To directly observe cells in their endogenous microenvironment, confocal live imaging was used to track runx1:GFP+ HSPCs as they arrive and lodge in the niche. A novel cellular interaction was observed that involves triggered remodeling of perivascular endothelial cells during niche formation. A chemical screen identified the TGF-beta pathway as a regulator of HSPC and niche interactions. Chemical manipulation of HSPCs was used to improve engraftment and repopulation capability following transplantation. Runx1:GFP fish treated with prostaglandin E2 (PGE2) during embryogenesis exhibit increased runx1+ cells in the AGM and CHT, consistent with previous in situ data. This increase in HSPCs is maintained into adulthood, even in the absence of prolonged PGE2 exposure. Kidney marrow from these treated fish can outcompete control marrow in transplantation assays. The ability of PGE2 to confer a long-term advantage on sorted mouse marrow populations in competitive transplantation assays was tested. I found that PGE2-treated short-term (ST)-HSCs, but not long-term (LT)-HSCs show enhanced transplantability in recipients compared to control animals. My studies demonstrate that the effects of PGE2 on HSC function persist over substantial time despite transient exposure. A population of short-term HSCs can engraft and give rise to long-term multilineage reconstitution following PGE2 treatment. Collectively, our studies have led to novel insights regarding the pathways involved in HSC migration, homing, and repopulation.
106

Expression of EEN (endophilin II): a fusion partner gene in leukemia, in haemopoietic cells

林嘉儀, Lam, Kar-yee. January 2001 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy
107

The development of surrogate marker-tagged ES cell technology to study haematopoietic commitment

Cheng, Yi-Han January 2013 (has links)
No description available.
108

In vitro hematopoietic stem/progenitor cell proliferation and labeling

Xu, Peng Unknown Date
No description available.
109

Molecular Mechanisms of Hematopoietic Stem Cell Development: The Role of Retinoic Acid Signaling

Chanda, Bhaskar 20 June 2014 (has links)
Molecular Mechanisms of Hematopoietic Stem Cell Development- The Role of Retinoic Acid Signaling Bhaskar Chanda For the Doctor of Philosophy Medical Biophysics University of Toronto 2013 Abstract During mouse embryonic development, the formation of blood or hematopoiesis occurs in multiple phases. The first phase or primitive hematopoiesis generates a restricted subset of blood cell lineages but is devoid of lymphoid and hematopoietic stem cell (HSC) potential. The next phase of hematopoiesis, also known as definitive hematopoiesis, is characterized by its ability to generate multilineage hematopoietic progenitors and HSCs from a specialized population of endothelial cells known as hemogenic endothelium (HE). Such endothelial to hematopoietic transitions (EHT) have been recently observed at a clonal level, however, molecular mechanisms that underlie EHT leading to the specification of HSCs have remained poorly understood. Here we show that retinoic acid (RA) signaling plays a pivotal role in embryonic hematopoiesis and HSC development. RA signaling inhibits primitive hematopoiesis, and promotes definitive hematopoiesis. This inductive effect of RA signaling extends to the specification of HSCs. Activation of the RA signaling pathway ex vivo in AGM-derived HE dramatically enhanced the repopulating potential, whereas its conditional inhibition in vivo abrogated HSC development. These repressive and inductive effects of RA signaling were mediated primarily via retinoic acid receptor (RAR)- &alpha;. We further analyzed the mechanistic basis of RA signaling with a combined use of cellular, molecular and biochemical assays, and show that &beta;-catenin dependent Wnt signaling is the downstream mediator of RA signaling. Collectively, this thesis provides new insight into molecular mechanisms that control embryonic hematopoiesis and identify the RA pathway as a key regulator of definitive hematopoiesis and HSC specification.
110

Ice Recrystallization Inhibition as a Mechanism for Reducing Cryopreservation Injury in a Hematopoietic Stem Cell Model

Wu, Luke K. 27 May 2011 (has links)
Cryopresevation is the process of cooling biological materials to low sub-zero temperatures for storage purposes. Numerous medical and technical applications, such as hematopoeitic stem cell transplantation and sperm banking, sometimes require the use of cryopreserved cells. Cryopreservation, however, can induce cell injury and reduce the yields of viable functional cells. Ice recrystallization is a mechanism of cryopreservation injury, but is rarely addressd in strategies to optimize cell cryopreservation. The results from this thesis demonstrate an association between the potency of carbohydrate-mediated ice recrystallization inhibition used in the cryopreservation of umbilical cord blood and recovery of viable non-apoptotic cells and hematopoietic progenitor function. Furthermore, increased numbers of apoptotic cells in hematopoeitic stem cell grafts were associated with reduced hematopoietic function and delayed hematopoietic recovery in patients undergoing blood stem cell transplantation. These findings provide a basis for pursuing further studies assessing ice recrystallization inhibition as a strategy for improving cell cryopreservation.

Page generated in 0.11 seconds