Spelling suggestions: "subject:"here oxygenase1 (HO-1)"" "subject:"here oxygenase (HO-1)""
1 |
Role of the macrophage in acute kidney injuryFerenbach, David Arthur January 2010 (has links)
Ischaemia/Reperfusion Injury (IRI) is the most common cause of acute kidney injury- a devastating clinical problem lacking any specific treatments to promote renal recovery. Macrophages (Mφ) are pleiotropic cells of the innate immune system, with roles spanning host defence, cytotoxicity, clearance of apoptotic cells and promotion of tissue repair. Mφ are also known to be important mediators of renal injury in other experimental models of renal disease including transplantation, obstruction and glomerulonephritis. This work sought to examine the role of Mφ in mediating renal IRI. Conditional renal Mφ and monocyte depletion prior to experimental IRI was achieved by administering diphtheria toxin to the CD11b-DTR transgenic animal. This had no impact on either renal function or structural injury. In contrast liposomal clodronate mediated Mφ depletion provided functional and structural protection from injury. Administration of exogenous apoptotic cells also protected renal function if delivered 24h prior to IRI. Immunodeficient SCID mice exhibited a protected injury phenotype after IRI, however derived no additional protection from the administration of either liposomal clodronate or i.v. apoptotic cells. These findings suggest that the protective phenotype must involve either lymphocyte populations or circulating antibody. Preliminary work demonstrates that SCID mice lack IgM natural antibody which deposits in the kidney in the first 30 minutes after IRI. It was also demonstrated that apoptotic cells bind IgM natural antibody present within the circulation. The potential for the key antioxidant enzyme Heme oxygenase-1 (HO-1) to protect renal function was also examined in aged mice using hemearginate (HA) - a potent HO-1 inducer. Echoing epidemiological studies in humans aged mice had increased susceptibility to IRI, whilst failing to induce medullary HO-1. The main site of medullary HO-1 induction by HA was in medullary Mφ, and the protective phenotype was abolished by Mφ ablation, implicating Mφ as the key mediators of HA induced protection in renal IRI. Final studies employed adenoviral transduction to overexpress HO-1 within bone marrow derived Mφ, leading to a modified phenotype with increased IL- 10 and phagocytosis, and reduced TNFα and NO production. When these were introduced in vivo after IRI renal function was improved, potentially due to accelerated clearance of renal platelet deposition.
|
2 |
PROTECTION AGAINST ENDOTHELIAL INFLAMMATION BY GREEN TEA FLAVONOIDSZheng, Yuanyuan 01 January 2010 (has links)
Endothelial inflammation is a pivotal early event in the development of atherosclerosis. Long term exposure to cardiovascular risk factors will ultimately exhaust those protective anti-inflammatory factors such as the heme oxygenase (HO) system. The HO system plays a critical role in cellular and tissue self-defense against oxidative stress and inflammation. Caveolae are membrane domains and are particularly abundant in endothelial cells, where they are believed to play a major role in the regulation of endothelial vesicular trafficking as well as the uptake of lipids and related lipophilic compounds, possibly including bioactive food components such as flavonoids. Research in this dissertation addresses the role of HO-1 and caveolae on dietary flavonoid epigallocatechin gallate (EGCG) mediated protection against pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and linoleic acid-induced activation of endothelial cells. The data support the hypothesis that EGCG protects against TNF-α-induced monocyte recruitment and adhesion partially through the induction of HO-1 and bilirubin. The observed anti-inflammatory effects of EGCG are mimicked by the HO-1 inducer cobalt protoporphyrin (CoPP) and abolished by HO-1 gene silencing. Nrf2 is the major transcription factor of phase II antioxidant enzymes including HO-1. Results clearly show that EGCG-induced HO-1 expression and subsequent bilirubin productions are dependent on functional Nrf2. EGCG also can down-regulate the base-line level of caveolin-1. Furthermore, silencing of the caveolin-1 gene can markedly down-regulate linoleic acid-induced COX-2 and MCP-1, indicating that caveolae may be a critical platform regulating inflammatory signaling pathways. Similar to EGCG treatment, silencing of caveolin-1 can also result in the activation of Nrf2, up-regulation of HO-1 and bilirubin. This may be one of the mechanisms to explain the protection effect of caveolin-1 gene silencing against endothelial inflammation. Moreover, EGCG rapidly accumulates in caveolae, which is associated with caveolin-1 displacement from the plasma membrane towards the cytosol. Caveolin-1 gene silencing can significantly reduce the uptake of EGCG in endothelial cells within 30 min. These data suggest that caveolae may play a role in the uptake and transport of EGCG in endothelial cells. These studies provide a novel target through which EGCG functions to protect against inflammatory diseases such as atherosclerosis.
|
3 |
Role of microRNAs in non-small cell lung carcinoma : effect of heme oxygenase-1 / Rôle des microARNs dans le carcinome pulmonaire non à petites cellules : effet de l’hème oxygénase-1Skrzypek, Klaudia 08 January 2013 (has links)
L’hème oxygénase-1 (HO-1), enzyme antioxydante, est capable de prévenir l’initiation tumorale tandis qu’elle promeut la progression de certaines tumeurs et l’angiogenèse. Ce travail a recherché si HO-1 peut moduler les microARNs et régule le développmemnt du carcinome pulmonaire humain non à petites cellules (NSCLC). La surexpression stable de HO-1 dans les cellules du NSCLC NCI-H292 accroit la production globale des miARNs et diminue significativement l’expression des oncomirs et angiomirs, tandis qu’elle augmente les miARNs suppresseurs de tumeurs. Le plus amplement diminué est le miR-378. Dans les cellules surexprimant HO-1 la p53 est aussi augmentée, Ang-1 et MUC5AC diminuées, prolifération migration et potentiel angiogéniques réduits. Les effets de HO-1 sur la prolifération tumorale, la migration et et l’expression de miR-378 sont modulées par CO. Au contraire, la surexpression stable de miR-378 décroit celle de HO-1 et de p53 tandis qu’elle accroît celle de MUC5AC, VEGF, IL-8 et Ang-1 et en conséquence accroit la prolifération, migration la stimulation des cellules endothéliales. L’ajout de HO-1 à des cellules surexprimant miR-378 réverse l’effet de miR-378 sur la prolifération et la migration des cellules cancéreuses. In vivo, les tumeurs surexprimant HO-1 sont de taille réduite, moins vascularisées et oxygénées et moins métastatiques tandis que la surexpression de miR-378 produit les effets inverses. Conformément, chez les patients NSCLC, l’expression de HO-1est réduite dans les métastases lymphatiques par rapport à la tumeur primaire tandis que miR-378 n’est pas modifié de manière significative. En conclusion, les résultats in vitro et in vivo indiquent que l’action coordonnée entre HO-1 et miR-378 module de manière significative la progression et l’angiogenèse du carcinome humain pulmonaire non à petites cellules. / Heme oxygenase-1 (HO-1), an antioxidant enzyme can prevent tumor initiation while it has been demonstrated to promote various tumors progression and angiogenesis. Here it was investigated whether HO-1 can modulate microRNAs and regulate human non-small cell lung cancer (NSCLC) development. Stable HO-1 overexpression in NSCLC NCI-H292 cells enhanced global production of miRNAs and significantly diminished expression of oncomirs and angiomirs, whereas upregulated tumor suppressive miRNAs. The most potently downregulated was miR-378. HO-1 overexpressing cells displayed also upregulated p53, downregulated Ang-1 and MUC5AC, reduced proliferation, migration and diminished angiogenic potential. CO was a mediator of HO-1 effects on tumor cells proliferation, migration and miR-378 expression. In contrast, stable miR-378 overexpression decreased HO-1 and p53 while enhanced expression of MUC5AC, VEGF, IL-8 and Ang-1 and consequently increased proliferation, migration and stimulation of endothelial cells. Adenoviral delivery of HO-1 to miR-378 overexpressing cells reversed miR-378 effect on proliferation and migration of cancer cells. In vivo, HO-1 overexpressing tumors were smaller, less vascularized and oxygenated and less metastatic, whereas miR-378 overexpression exerted the opposite effects. Accordingly, in patients with NSCLC, HO-1 expression was lower in metastases to lymph nodes than in primary tumors while miR-378 did not differ significantly. To conclude, in vitro and in vivo data indicate that interplay between HO-1 and miR-378 significantly modulates NSCLC progression and angiogenesis.
|
4 |
The role of chaperone proteins in neurodegenerative diseasesZhang, Xuekai January 2013 (has links)
Many neurodegenerative diseases are characterized by the accumulation of misfolded proteins that often share common morphological and biochemical features, and can similarly co-localize with several other proteins, including various chaperone proteins. Chaperone proteins, like heat shock protein 27 (HSP27), heme oxygenase 1 (HO-1) and clusterin, have been implicated as potent modulators of misfolded proteins, thus may play important roles in the pathogenesis of neurodegenerative diseases. The present study aims to investigate their roles in the pathogenesis of Frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Motor neuron disease (MND) by determining their distribution and amount via immunohistochemical staining and western blotting in diseased and control subjects.There were distinct patterns of HSP27 and clusterin immunostaining in different brain regions. For HSP27, patients with AD and FTLD were in general more severely affected than were patients with MND and control subjects. For clusterin, patients with AD and FTLD were more severely affected than control subjects where neurons and glial cells were concerned, while patients with AD and control subjects were more severely affected than those with FTLD where diffuse and cored plaques were concerned. However, there were no obvious differences in the pattern of HO-1 immunostaining in various brain regions in patients with AD or FTLD relative to control subjects. Moreover, there was no association between HSP27, HO-1 and clusterin with disease or histological type, and the ‘classic’ neuropathological changes in FTLD, AD and MND were not immunoreactive to any of these proteins. There were significant correlations between the degrees of HO-1 and clusterin immunostaining in many brain areas for both AD and FTLD cases, and for all cases overall, but none between HSP27 and clusterin or HSP27 and HO-1. Present results suggest an involvement with ongoing cellular stress, misfolded or unfolded protein accumulation or the deficits/failure of other relevant protein quality control systems, in the pathogenesis of these neurodegenerative diseases. Present work may therefore have implications for the further development of ideas concerning the cause or treatment of neurodegenerative diseases where there is aberrant accumulation of misfolded, aggregated protein, and perhaps for conformational diseases in general. However, there are still many issues remain to be elucidated. Further research aimed at understanding the function and mechanisms of the chaperone system, and other protein quality control mechanisms, in the pathogenesis of neurodegenerative diseases is still needed.
|
Page generated in 0.0642 seconds