• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive molecular evolution and biodiversity in malaria parasites

Bodden, Haley Nicole 10 August 2018 (has links)
Haemosporidian parasites are the agents of malaria. Countless vertebrates are affected by haemosporidians each year. Haemosporidians have been shown to be evolving at rapid rates; leading to new species of haemosporidians being discovered and new host associations being made. Adaptive molecular evolution was detected in an important hemoglobin degradation gene, falcilysin. At multiple sites across multiple genes involved in important functions signatures of negative selection were detected. The signatures of selection across non-hemoglobin degradation genes were indicative of evolutionary conservation when compared to the more variable hemoglobin degradation genes. This is probably due to the important role the hemoglobin degradation genes play in haemosporidian metabolism. A survey of local passerines detected a parasite prevalence rate of 57%. This included three genera of haemosporidians detected across six lineages and two more distantly related sequences. Leucocytozoon was detected for the first time in Mississippi songbirds, indicating the importance of surveying for understanding haemosporidian evolution and range.
2

Biochemical Characterization of Two Aminopeptidases Involved in Hemoglobin Catabolism in the Food Vacuole of Plasmodium falciparum

Ragheb, Daniel Raafat Tadros 29 April 2011 (has links)
The parasite Plasmodium falciparum is the causative agent of the most severe form of human malaria. During its intraerythocytic life cycle, P. falciparum transports red blood cell contents to its acidic organelle, known as the food vacuole, where a series of proteases degrade a majority of the host hemoglobin. Two metalloaminopeptidases, PfAPP and PfA-M1, have been previously localized to the food vacuole (in addition to distinct secondary locations for each), implicating them in the final stages of hemoglobin catabolism. Prior genetic work has determined these enzymes are necessary for efficient parasite proliferation, highlighting them as potential anti-malarial drug targets. This study presents the biochemical basis for the catalytic roles of these two enzymes in the hemoglobin degradation pathway. PfAPP, an aminopeptidase P homolog, is specific for hydrolyzing the N-termini of peptides containing penultimate prolines. PfA-M1 is a member of the expansive M1 family of proteases and exhibits a broad specificity towards substrates. The two enzymes are ubiquitous, found in organisms across all kingdoms of life. Their presence in an acidic environment is unique for aminopeptidase P proteins and rare for M1 homologs. Our immunolocalization results have confirmed the dual distribution of these two enzymes in the parasite. Vacuolar targeting was found to be associated with the Plasmodium specific N-terminal extension found in the PfA-M1 sequence by yellow fluorescent protein fusion studies. Kinetic analysis of recombinant forms of PfAPP and PfA-M1 revealed both enzymes are stable and catalytically efficient in the substrate rich, acidic environment of the parasite food vacuole. In addition, mutagenic exploration of the PfA-M1 active site has determined a residue important in dictating substrate specificity among homologs of the same family. These results provide insight into the parasite's functional recruitment of these enzymes to deal with the final stages of hemoglobin catabolism and necessary considerations for inhibitor design. / Ph. D.
3

SARS-CoV-2 Infects Red Blood Cell Progenitors and Dysregulates Hemoglobin and Iron Metabolism

Kronstein-Wiedemann, Romy, Stadtmüller, Marlena, Traikov, Sofia, Georgi, Mandy, Teichert, Madeleine, Yosef, Hesham, Wallenborn, Jan, Karl, Andreas, Schütze, Karin, Wagner, Michael, El-Armouche, Ali, Tonn, Torsten 19 March 2024 (has links)
Background SARS-CoV-2 infection causes acute respiratory distress, which may progress to multiorgan failure and death. Severe COVID-19 disease is accompanied by reduced erythrocyte turnover, low hemoglobin levels along with increased total bilirubin and ferritin serum concentrations. Moreover, expansion of erythroid progenitors in peripheral blood together with hypoxia, anemia, and coagulopathies highly correlates with severity and mortality. We demonstrate that SARS-CoV-2 directly infects erythroid precursor cells, impairs hemoglobin homeostasis and aggravates COVID-19 disease. Methods Erythroid precursor cells derived from peripheral CD34+ blood stem cells of healthy donors were infected in vitro with SARS-CoV-2 alpha variant and differentiated into red blood cells (RBCs). Hemoglobin and iron metabolism in hospitalized COVID-19 patients and controls were analyzed in plasma-depleted whole blood samples. Raman trapping spectroscopy rapidly identified diseased cells. Results RBC precursors express ACE2 receptor and CD147 at day 5 of differentiation, which makes them susceptible to SARS-CoV-2 infection. qPCR analysis of differentiated RBCs revealed increased HAMP mRNA expression levels, encoding for hepcidin, which inhibits iron uptake. COVID-19 patients showed impaired hemoglobin biosynthesis, enhanced formation of zinc-protoporphyrine IX, heme-CO2, and CO-hemoglobin as well as degradation of Fe-heme. Moreover, significant iron dysmetablolism with high serum ferritin and low serum iron and transferrin levels occurred, explaining disturbances of oxygen-binding capacity in severely ill COVID-19 patients. Conclusions Our data identify RBC precursors as a direct target of SARS-CoV-2 and suggest that SARS-CoV-2 induced dysregulation in hemoglobin- and iron-metabolism contributes to the severe systemic course of COVID-19. This opens the door for new diagnostic and therapeutic strategies.

Page generated in 0.1242 seconds