• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operators

Barbeiro, André Santoleri Villa 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.
2

Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operators

André Santoleri Villa Barbeiro 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.

Page generated in 0.07 seconds