• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting Package Defects: Quantification of Critical Leak Size

Gibney, Matthew Joseph IV 05 September 2000 (has links)
Threshold leak sizes and leak rates were calculated for a number of liquid food products exhibiting a wide range of surface tension and viscosity values. From this data, one can see that mathematically, under typical pressure differentials generated in food packages (less than or equal to ±34.5 kPa), a leak will never start through a 2 μm defect. The calculated leak rates were compared to calculated evaporation rates. The evaporation rate exceeds the leak rate at lower sized microholes (2, and 5 μm diameter) under typical pressure differentials found in food packages. If the liquid, typically aqueous in food products, is evaporating off faster than the leak itself, then there will be solids left behind that could effectively plug the leak. The critical leak size is the size micro-defect that allows microbial penetration into the package. The critical leak size of air-filled defects was found to be 7 μm at all pressures tested. This size is considerably important to food packagers because this is when sterility of the package is lost. Previous leak studies have shown that the critical leak size for liquid-filled defects coincide with the threshold leak size and pressure. If this is in fact true, then air-filled defects should exhibit a larger critical leak size than the liquid-filled defects. In this study, air-filled defects were examined. A bioaerosol exposure chamber was used to test micro-defects, nickel microtubes of known diameters 2, 5, 7, 10, 20, and 50 μm hydraulic diameters, against pressure differentials of 0, -6.9, -13.8, and -34.5 kPa. / Master of Science
2

Low Temperature Hermetically Sealed 3-D MEMS Device for Wireless Optical Communication

Agarwal, Rahul 01 June 2007 (has links)
Novel processes were developed that resulted in a self-packaged device during the system integration, along with a transparent lid for inspection or optical probing. A new process was developed for improving the verticality in Micro Electro Mechanical Systems (MEMS) structures using Deep Reactive Ion Etching (DRIE). A self-pattered, mask-less photolithography technique was developed to metallize these vertical structures while maintaining a transparent window, for packaging of various MEMS devices. The verticality and metallization coverage were evaluated by incorporating the MEMS structures into an optical Corner Cube Retroreflector (CCR). A low temperature, hermetic sealing technique was also developed using In-Au thermo-compression bonding at 160°C. Cross-shaped 550um deep vertical mirrors, with sidewall angles of 90.08° were etched with this new DRIE technique. This is the best reported sidewall angle for such deep structures. The typical scalloped DRIE sidewall roughness was reduced to 40nm using wet polishing. A bonded Pyrex wafer was used as the handle wafer during DRIE; it eventually forms the package window after DRIE. The metallized, vertical mirrors were bonded to a MEMS device chip to assemble and package the CCR. The MEMS device chip consisted of an array of torsion mirrors. The mirrors were designed to modulate at 6Vp-p - 20Vp-p, with the resonant frequencies ranging from 25 KHz - 50 KHz. The design and simulation results are presented. To test the hermetic seal, helium leak tests were performed on the packaged device. Leak rates of as low as 2.8x10-8 atm cc/s air were detected, which is better than the MIL-STD-883G of 5x10-8 atm cc/s air for a package volume of 7.8x10-3 CC. A microprocessor and temperature/humidity sensor was then integrated with the CCR to assemble a passive optical digital data communicator. A flexible circuit design and a folded packaging scheme were utilized to minimize the overall form factor. Flat, flexible polymer batteries were incorporated to reduce the thickness of the package to a few millimeters. The fully packaged sensor system was about 30mmx30mmx6mm. Recorder sensor data was transmitted to a remote location using the CCR, and those results are presented.

Page generated in 0.0116 seconds