• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volatilitetsprognoser på den amerikanska aktiemarknaden : En kvantitativ studie om den implicita volatilitetens prognosförmåga på realiserad volatilitet / Volatility forecasts on the American stock market

Lindahl, Robert, Kylberg, Carl January 2022 (has links)
Bakgrund: För att kunna ta välgrundade finansiella beslut, behöver aktörer göra prognoser om vad som kommer ske i framtiden. Detta har medfört att både forskare och praktiker har byggt olika modeller som syftar till att prognostisera framtiden. Ett centralt mått i många finansiella modeller är tillgångens volatilitet, som är ett mått på prisförändringen under en tidsperiod. Den implicita volatiliteten, härledd via derivatmarknaden och prissättningsmodeller, är en marknadsprognos för en tillgångs framtida volatilitet. Tidigare forskning pekar på att den implicita volatiliteten är bättre på att prognostisera den framtida volatiliteten jämfört med modeller som använder historisk volatilitet. Däremot finns det osäkerheter kring hur variabler som handelsvolym och löptid påverkar dessa volatilitetsprognoser. Syfte: Syftet med studien är att undersöka hur prognosförmågan hos den implicita volatiliteten för den framtida realiserade volatiliteten förhåller sig vid olika löptider samt vid olika handelsvolymer. Metod: För att uppnå syftet med studien har vi använt oss av en kvantitativ metod samt en deduktiv ansats. Urvalet består av 100 bolag som varit noterade på S&P 500 mellan 2017 och 2021. Vidare har regressioner utförts i syfte till att fastställa den implicita volatilitetens prognosförmåga. Två modeller har använts varav en heterogeneous autoregressive modell (HAR) och en enkel linjär regression (ELR). Slutligen analyseras regressionerna utifrån kategoriseringar baserat på löptid samt olika handelsvolym. Slutsats: Studien finner inga signifikanta skillnader bland förklaringsgraderna med avseende på olika löptider. Däremot finner vi att den implicita volatiliteten från kortare optioner tenderar att underskatta den realiserade volatiliteten till högre grad än för längre löptider. I kontrast till tidigare forskning finner vi att prognoser blev sämre vid högre handelsvolymer men att underskattningar är vanligare för lägre handelsvolymer.
2

Předpovídání realizované volatility: Záleží na skocích v cenách? / Forecasting realized volatility: Do jumps in prices matter?

Lipták, Štefan January 2012 (has links)
This thesis uses Heterogeneous Autoregressive models of Realized Volatility on five-minute data of three of the most liquid financial assets - S&P 500 Futures index, Euro FX and Light Crude NYMEX. The main contribution lies in the length of the datasets which span the time period of 25 years (13 years in case of Euro FX). Our aim is to show that decomposing realized variance into continuous and jump components improves the predicatability of RV also on extremely long high frequency datasets. The main goal is to investigate the dynamics of the HAR model parameters in time. Also, we examine if volatilities of various assets behave differently. The results reveal that decomposing RV into its components indeed im- proves the modeling and forecasting of volatility on all datasets. However, we found that forecasts are best when based on short, 1-2 years, pre-forecast periods due to high dynamics of HAR model's parameters in time. This dynamics is revealed also by a year-by-year estimation on all datasets. Con- sequently, we consider HAR models to be inapproppriate for modeling RV on such long datasets as they are not able to capture the dynamics of RV. This was indicated on all three datasets, thus, we conclude that volatility behaves similarly for different types of assets with similar liquidity. 1
3

Analysis of Interdependencies among Central European Stock Markets / Analysis of Interdependencies among Central European Stock Markets

Mašková, Jana January 2011 (has links)
The objective of the thesis is to examine interdependencies among the stock markets of the Czech Republic, Hungary, Poland and Germany in the period 2008-2010. Two main methods are applied in the analysis. The first method is based on the use of high-frequency data and consists in the computation of realized correlations, which are then modeled using the heterogeneous autoregressive (HAR) model. In addition, we employ realized bipower correlations, which should be robust to the presence of jumps in prices. The second method involves modeling of correlations by means of the Dynamic Conditional Correlation GARCH (DCC-GARCH) model, which is applied to daily data. The results indicate that when high-frequency data are used, the correlations are biased towards zero (the so-called "Epps effect"). We also find quite significant differences between the dynamics of the correlations from the DCC-GARCH models and those of the realized correlations. Finally, we show that accuracy of the forecasts of correlations can be improved by combining results obtained from different models (HAR models for realized correlations, HAR models for realized bipower correlations, DCC-GARCH models).
4

Análise de previsões de volatilidade para modelos de Valor em Risco (VaR)

Vargas, Rafael de Morais 27 February 2018 (has links)
Submitted by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-06-18T18:53:22Z No. of bitstreams: 1 RafaeldeMoraisVargasDissertacao2018.pdf: 2179808 bytes, checksum: e2993cd35f13b4bd6411d626aefa0043 (MD5) / Approved for entry into archive by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-06-18T18:54:14Z (GMT) No. of bitstreams: 1 RafaeldeMoraisVargasDissertacao2018.pdf: 2179808 bytes, checksum: e2993cd35f13b4bd6411d626aefa0043 (MD5) / Made available in DSpace on 2018-06-18T18:54:14Z (GMT). No. of bitstreams: 1 RafaeldeMoraisVargasDissertacao2018.pdf: 2179808 bytes, checksum: e2993cd35f13b4bd6411d626aefa0043 (MD5) Previous issue date: 2018-02-27 / Given the importance of market risk measures, such as value at risk (VaR), in this paper, we compare traditionally accepted volatility forecast models, in particular, the GARCH family models, with more recent models such as HAR-RV and GAS in terms of the accuracy of their VaR forecasts. For this purpose, we use intraday prices, at the 5-minute frequency, of the S&P 500 index and the General Electric stocks, for the period from January 4, 2010 to December 30, 2013. Based on the tick loss function and the Diebold-Mariano test, we did not find difference in the predictive performance of the HAR-RV and GAS models in comparison with the Exponential GARCH (EGARCH) model, considering daily VaR forecasts at the 1% and 5% significance levels for the return series of the S&P 500 index. Regarding the return series of General Electric, the 1% VaR forecasts obtained from the HAR-RV models, assuming a t-Student distribution for the daily returns, are more accurate than the forecasts of the EGARCH model. In the case of the 5% VaR forecasts, all variations of the HAR-RV model perform better than the EGARCH. Our empirical study provides evidence of the good performance of HAR-RV models in forecasting value at risk. / Dada a importância de medidas de risco de mercado, como o valor em risco (VaR), nesse trabalho, comparamos modelos de previsão de volatilidade tradicionalmente mais aceitos, em particular, os modelos da família GARCH, com modelos mais recentes, como o HAR-RV e o GAS, em termos da acurácia de suas previsões de VaR. Para isso, usamos preços intradiários, na frequência de 5 minutos, do índice S&P 500 e das ações da General Electric, para o período de 4 de janeiro de 2010 a 30 de dezembro de 2013. Com base na função perda tick e no teste de Diebold-Mariano, não encontramos diferença no desempenho preditivo dos modelos HAR-RV e GAS em relação ao modelo Exponential GARCH (EGARCH), considerando as previsões de VaR diário a 1% e 5% de significância para a série de retornos do índice S&P 500. Já com relação à série de retornos da General Electric, as previsões de VaR a 1% obtidas a partir dos modelos HAR-RV, assumindo uma distribuição t-Student para os retornos diários, mostram-se mais acuradas do que as previsões do modelo EGARCH. No caso das previsões de VaR a 5%, todas as variações do modelo HAR-RV apresentam desempenho superior ao EGARCH. Nosso estudo empírico traz evidências do bom desempenho dos modelos HAR-RV na previsão de valor em risco.

Page generated in 0.14 seconds