• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconnaissance d'écriture manuscrite par des techniques markoviennes : une approche bidimensionnelle et générique

Chevalier, Sylvain 01 December 2004 (has links) (PDF)
Nous présentons une approche de reconnaissance d'écriture manuscrite à partir de champs de Markov cachés et fondée sur une analyse entièrement bidimensionnelle de l'écriture. Son originalité réside dans la combinaison d'une analyse fenêtrée de l'image, d'une modélisation markovienne et dans la mise en oeuvre de la programmation dynamique 2D qui permet un décodage rapide et optimal des champs de Markov. Un aspect important de ces travaux est la méthodologie de développement employée qui est centrée sur l'évaluation systématique des apports algorithmiques et des paramètres utilisés. Ces algorithmes sont en partie empruntés aux techniques utilisées dans le domaine de la reconnaissance de la parole et sont très génériques.<br /><br />L'approche proposée est validée sur deux applications correspondant à des bases de données standard et librement disponibles. L'application de cette méthode extrêmement générique à une tâche de reconnaissance de chiffres manuscrits a permis d'obtenir des résultats comparables à ceux de l'état de l'art. L'application à une tâche de reconnaissance de mots manuscrits a permis de confirmer que l'extension de cette approche à des tâches plus complexes était naturelle.<br /><br />L'ensemble de cette recherche a démontré la validité de l'approche développée qui apparaît comme candidate au statut d'approche standard pour plusieurs problèmes de vision. En outre, elle ouvre la voie à de très nombreux développements concernant la tâche de traitement de l'écriture manuscrite et des améliorations significatives pourraient encore être apportées en recourant à d'autres principes issus du traitement de la parole et du langage. D'autres tâches comme la segmentation d'image devraient tirer avantage de la robustesse et de la faculté d'apprentissage de la modélisation que nous proposons.
2

Graphical models and point set matching / Modelos Gráficos e Casamento de Padrões de Pontos

Caetano, Tiberio Silva January 2004 (has links)
Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fundamentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Computacional até Química Computacional. Sempre que dois padrões complexos estão codi- ficados em termos de dois conjuntos de pontos que identificam suas características fundamentais, sua comparação pode ser vista como um problema de casamento de padrões de pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento inexato (quando ruído está presente), resultados experimentais confirmam a validade da abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos como um problema de casamento de grafos ponderados. O problema de casamento de grafos ponderados é então formulado como um problema de inferência Bayesiana em um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo completo. É possível mostrar que inferência probabilística exata neste modelo simples tem complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em consideração. Experimentos computacionais comparando esta técnica com a bem conhecida baseada em relaxamento probabilístico evidenciam uma melhora significativa de desempenho para casamento inexato de padrões de pontos. A abordagem proposta é signi- ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na ausência de ruído, os resultados são sempre perfeitos. / Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.
3

Graphical models and point set matching / Modelos Gráficos e Casamento de Padrões de Pontos

Caetano, Tiberio Silva January 2004 (has links)
Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fundamentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Computacional até Química Computacional. Sempre que dois padrões complexos estão codi- ficados em termos de dois conjuntos de pontos que identificam suas características fundamentais, sua comparação pode ser vista como um problema de casamento de padrões de pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento inexato (quando ruído está presente), resultados experimentais confirmam a validade da abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos como um problema de casamento de grafos ponderados. O problema de casamento de grafos ponderados é então formulado como um problema de inferência Bayesiana em um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo completo. É possível mostrar que inferência probabilística exata neste modelo simples tem complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em consideração. Experimentos computacionais comparando esta técnica com a bem conhecida baseada em relaxamento probabilístico evidenciam uma melhora significativa de desempenho para casamento inexato de padrões de pontos. A abordagem proposta é signi- ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na ausência de ruído, os resultados são sempre perfeitos. / Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.
4

Graphical models and point set matching / Modelos Gráficos e Casamento de Padrões de Pontos

Caetano, Tiberio Silva January 2004 (has links)
Casamento de padrões de pontos em Espaços Euclidianos é um dos problemas fundamentais em reconhecimento de padrões, tendo aplicações que vão desde Visão Computacional até Química Computacional. Sempre que dois padrões complexos estão codi- ficados em termos de dois conjuntos de pontos que identificam suas características fundamentais, sua comparação pode ser vista como um problema de casamento de padrões de pontos. Este trabalho propõe uma abordagem unificada para os problemas de casamento exato e inexato de padrões de pontos em Espaços Euclidianos de dimensão arbitrária. No caso de casamento exato, é garantida a obtenção de uma solução ótima. Para casamento inexato (quando ruído está presente), resultados experimentais confirmam a validade da abordagem. Inicialmente, considera-se o problema de casamento de padrões de pontos como um problema de casamento de grafos ponderados. O problema de casamento de grafos ponderados é então formulado como um problema de inferência Bayesiana em um modelo gráfico probabilístico. Ao explorar certos vínculos fundamentais existentes em padrões de pontos imersos em Espaços Euclidianos, provamos que, para o casamento exato de padrões de pontos, um modelo gráfico simples é equivalente ao modelo completo. É possível mostrar que inferência probabilística exata neste modelo simples tem complexidade polinomial para qualquer dimensionalidade do Espaço Euclidiano em consideração. Experimentos computacionais comparando esta técnica com a bem conhecida baseada em relaxamento probabilístico evidenciam uma melhora significativa de desempenho para casamento inexato de padrões de pontos. A abordagem proposta é signi- ficativamente mais robusta diante do aumento do tamanho dos padrões envolvidos. Na ausência de ruído, os resultados são sempre perfeitos. / Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Page generated in 0.0813 seconds