• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 25
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Semantic Classification And Retrieval System For Environmental Sounds

Okuyucu, Cigdem 01 October 2012 (has links) (PDF)
The growth of multimedia content in recent years motivated the research on audio classification and content retrieval area. In this thesis, a general environmental audio classification and retrieval approach is proposed in which higher level semantic classes (outdoor, nature, meeting and violence) are obtained from lower level acoustic classes (emergency alarm, car horn, gun-shot, explosion, automobile, motorcycle, helicopter, wind, water, rain, applause, crowd and laughter). In order to classify an audio sample into acoustic classes, MPEG-7 audio features, Mel Frequency Cepstral Coefficients (MFCC) feature and Zero Crossing Rate (ZCR) feature are used with Hidden Markov Model (HMM) and Support Vector Machine (SVM) classifiers. Additionally, a new classification method is proposed using Genetic Algorithm (GA) for classification of semantic classes. Query by Example (QBE) and keyword-based query capabilities are implemented for content retrieval.
22

Pitch tracking and speech enhancement in noisy and reverberant environments

Wu, Mingyang 07 November 2003 (has links)
No description available.
23

Rozpoznáváni standardních PILOT-CONTROLLER řídicích povelů v hlasové podobě / Voice recognition of standard PILOT-CONTROLLER control commands

Kufa, Tomáš January 2009 (has links)
The subject of this graduation thesis is an application of speech recognition into ATC commands. The selection of methods and approaches to automatic recognition of ATC commands rises from detailed air traffic studies. By the reason that there is not any definite solution in such extensive field like speech recognition, this diploma work is focused just on speech recognizer based on comparison with templates (DTW). This recognizor is in this thesis realized and compared with freely accessible HTK system from Cambrige University based on statistic methods making use of Hidden Markov models. The usage propriety of both methods is verified by practical testing and results evaluation.
24

PROGRAM ANOMALY DETECTION FOR INTERNET OF THINGS

Akash Agarwal (13114362) 01 September 2022 (has links)
<p>Program anomaly detection — modeling normal program executions to detect deviations at runtime as cues for possible exploits — has become a popular approach for software security. To leverage high performance modeling and complete tracing, existing techniques however focus on subsets of applications, e.g., on system calls or calls to predefined libraries. Due to limited scope, it is insufficient to detect subtle control-oriented and data-oriented attacks that introduces new illegal call relationships at the application level. Also such techniques are hard to apply on devices that lack a clear separation between OS and the application layer. This dissertation advances the design and implementation of program anomaly detection techniques by providing application context for library and system calls making it powerful for detecting advanced attacks targeted at manipulating intra- and inter-procedural control-flow and decision variables. </p> <p><br></p> <p>This dissertation has two main parts. The first part describes a statically initialized generic calling context program anomaly detection technique LANCET based on Hidden Markov Modeling to provide security against control-oriented attacks at program runtime. It also establishes an efficient execution tracing mechanism facilitated through source code instrumentation of applications. The second part describes a program anomaly detection framework EDISON to provide security against data-oriented attacks using graph representation learning and language models for intra and inter-procedural behavioral modeling respectively.</p> <p><br> This dissertation makes three high-level contributions. First, the concise descriptions demonstrates the design, implementation and extensive evaluation of an aggregation-based anomaly detection technique using fine-grained generic calling context-sensitive modeling that allows for scaling the detection over entire applications. Second, the precise descriptions show the design, implementation, and extensive evaluation of a detection technique that maps runtime traces to the program’s control-flow graph and leverages graphical feature representation to learn dynamic program behavior. Finally, this dissertation provides details and experience for designing program anomaly detection frameworks from high-level concepts, design, to low-level implementation techniques.</p>
25

Développement d'un alphabet structural intégrant la flexibilité des structures protéiques / Development of a structural alphabet integrating the flexibility of protein structures

Sekhi, Ikram 29 January 2018 (has links)
L’objectif de cette thèse est de proposer un Alphabet Structural (AS) permettant une caractérisation fine et précise des structures tridimensionnelles (3D) des protéines, à l’aide des chaînes de Markov cachées (HMM) qui permettent de prendre en compte la logique issue de l’enchaînement des fragments structuraux en intégrant l’augmentation des conformations 3D des structures protéiques désormais disponibles dans la banque de données de la Protein Data Bank (PDB). Nous proposons dans cette thèse un nouvel alphabet, améliorant l’alphabet structural HMM-SA27,appelé SAFlex (Structural Alphabet Flexibility), dans le but de prendre en compte l’incertitude des données (données manquantes dans les fichiers PDB) et la redondance des structures protéiques. Le nouvel alphabet structural SAFlex obtenu propose donc un nouveau modèle d’encodage rigoureux et robuste. Cet encodage permet de prendre en compte l’incertitude des données en proposant trois options d’encodages : le Maximum a posteriori (MAP), la distribution marginale a posteriori (POST)et le nombre effectif de lettres à chaque position donnée (NEFF). SAFlex fournit également un encodage consensus à partir de différentes réplications (chaînes multiples, monomères et homomères) d’une même protéine. Il permet ainsi la détection de la variabilité structurale entre celles-ci. Les avancées méthodologiques ainsi que l’obtention de l’alphabet SAFlex constituent les contributions principales de ce travail de thèse. Nous présentons aussi le nouveau parser de la PDB (SAFlex-PDB) et nous démontrons que notre parser a un intérêt aussi bien sur le plan qualitatif (détection de diverses erreurs)que quantitatif (rapidité et parallélisation) en le comparant avec deux autres parsers très connus dans le domaine (Biopython et BioJava). Nous proposons également à la communauté scientifique un site web mettant en ligne ce nouvel alphabet structural SAFlex. Ce site web représente la contribution concrète de cette thèse alors que le parser SAFlex-PDB représente une contribution importante pour le fonctionnement du site web proposé. Cette caractérisation précise des conformations 3D et la prise en compte de la redondance des informations 3D disponibles, fournies par SAFlex, a en effet un impact très important pour la modélisation de la conformation et de la variabilité des structures 3D, des boucles protéiques et des régions d’interface avec différents partenaires, impliqués dans la fonction des protéines / The purpose of this PhD is to provide a Structural Alphabet (SA) for more accurate characterization of protein three-dimensional (3D) structures as well as integrating the increasing protein 3D structure information currently available in the Protein Data Bank (PDB). The SA also takes into consideration the logic behind the structural fragments sequence by using the hidden Markov Model (HMM). In this PhD, we describe a new structural alphabet, improving the existing HMM-SA27 structural alphabet, called SAFlex (Structural Alphabet Flexibility), in order to take into account the uncertainty of data (missing data in PDB files) and the redundancy of protein structures. The new SAFlex structural alphabet obtained therefore offers a new, rigorous and robust encoding model. This encoding takes into account the encoding uncertainty by providing three encoding options: the maximum a posteriori (MAP), the marginal posterior distribution (POST), and the effective number of letters at each given position (NEFF). SAFlex also provides and builds a consensus encoding from different replicates (multiple chains, monomers and several homomers) of a single protein. It thus allows the detection of structural variability between different chains. The methodological advances and the achievement of the SAFlex alphabet are the main contributions of this PhD. We also present the new PDB parser(SAFlex-PDB) and we demonstrate that our parser is therefore interesting both qualitative (detection of various errors) and quantitative terms (program optimization and parallelization) by comparing it with two other parsers well-known in the area of Bioinformatics (Biopython and BioJava). The SAFlex structural alphabet is being made available to the scientific community by providing a website. The SAFlex web server represents the concrete contribution of this PhD while the SAFlex-PDB parser represents an important contribution to the proper function of the proposed website. Here, we describe the functions and the interfaces of the SAFlex web server. The SAFlex can be used in various fashions for a protein tertiary structure of a given PDB format file; it can be used for encoding the 3D structure, identifying and predicting missing data. Hence, it is the only alphabet able to encode and predict the missing data in a 3D protein structure to date. Finally, these improvements; are promising to explore increasing protein redundancy data and obtain useful quantification of their flexibility

Page generated in 0.0568 seconds