61 |
Probing the Higgs coupling to the top quark at the LHC in the CMS experiment / Etude du couplage du boson de Higgs au quark top au LHC dans l'expérience CMSStrebler, Thomas 22 September 2017 (has links)
Cette thèse présente une étude de la production associée du boson de Higgs en association avec des quarks tops, suivie d’une désintégration du boson de Higgs en leptons tau, dans des collisions proton-proton (pp) à une énergie dans le centre de masse de sqrt(s) = 13 TeV enregistrées avec le détecteur CMS au Grand collisionneur de hadrons (LHC) du CERN.Ce travail s’inscrit dans le contexte du Run 2 du LHC, marqué par une augmentation de l’énergie dans le centre de masse de 8 à 13 TeV accompagnée d’une augmentation de la luminosité instantanée des collisions par rapport au Run 1. Pour faire face à ces nouvelles conditions de prise de données, CMS a entrepris une amélioration complète du système de déclenchement de niveau 1 accomplie avant 2016. Ce nouveau système et en particulier le nouvel algorithme électron et photon de niveau 1 ont contribué avec succès à un grand nombre de résultats CMS basés sur les données du Run 2. La mise en service de ce nouveau système ainsi que ces performances mesurées dans les premières données collectées par ce nouveau système de déclenchement sont présentées en détails.Une technique d’analyse novatrice basée sur la Méthode des Éléments de Matrice optimisée pour la recherche du processus ttH, H->tautau est également présentée, ainsi que plusieurs outils génériques pouvant âtre utilisés dans une large variété d’analyses H->tautau. Les résultats de l’analyse CMS utilisant cette méthode basés sur 35.9 fb-1 collectés en 2016 sont présentés. L’hypothèse "bruit de fond seul" est défavorisée mais n’est pas encore exclue par cette analyse à elle seule. / This thesis reports a study of the Higgs boson production in association with top quarks and decaying into τ leptons in proton-proton (pp) collisions at a center-of-mass energy of sqrt(s) = 13 TeV recorded with the CMS detector at the CERN Large Hadron Collider (LHC).This work has been carried out in the context of the Run 2 of the LHC, marked by an increase in the center-of-mass energy from 8 to 13 TeV together with an increase in the instantaneous luminosity of the collisions with respect to Run 1. To cope with this new data-taking conditions, CMS had initiated a full upgrade of the Level-1 trigger system achieved by 2016. This new system and in particular the new Level-1 electron and photon algorithm have successfully contributed to a large number of CMS results using Run 2 data. The commissioning of this new system and its performance measured with the first data collected with this new trigger are presented in details.A novel analysis technique based on the Matrix Element Method optimized for the search of the ttH, H->tautau process is also presented, including several generic tools which can be used in a large variety of H->tautau analyses. Results of the CMS analysis using this method based on 35.9 fb-1 collected in 2016 are presented. The background-only hypothesis is disfavored but not yet excluded by this analysis alone.
|
62 |
Search for the Standard Model Higgs boson produced in association with top quarks in the lepton plus jets channelFlowers, Sean Christopher 11 December 2017 (has links)
No description available.
|
63 |
Discovery and measurement of the Higgs boson in the WW decay channelHall, David Christopher January 2014 (has links)
In the Standard Model of particle physics, the non-zero masses of the W and Z bosons and the fermions are generated through interactions with the Higgs field, excitations of which correspond to Higgs bosons. Thus, the experimental discovery of the Higgs boson is of prime importance to physics, and would confirm our understanding of fundamental mass generation. This thesis describes a search for the gg → H → WW → lνlν process of Higgs boson production and decay. It uses the LHC Run I dataset of pp collisions recorded by the ATLAS detector, which corresponds to an integrated luminosity of 4.5 fb<sup>−1</sup> at √s = 7 TeV and 20.3 fb<sup>−1</sup> at √s = 8 TeV. An excess of events is observed with a significance of 4.8 standard deviations, which is consistent with Higgs boson production. The significance is extended to 6.1 standard deviations when the vector boson fusion production process is included. The measured signal strength is 1.11<sup>+0.23</sup><sub style='position: relative; left: -2.1em;'>-0.21</sub> at m<sub>H</sub> = 125 GeV. A cross section measurement of WW production, a major background to this search, is also presented using the √s = 7 TeV dataset only.
|
64 |
Anatomy of exotic Higgs decays in 2HDMKling, Felix, No, Jose Miguel, Su, Shufang 16 September 2016 (has links)
Large mass splittings between new scalars in two-Higgs-doublet models (2HDM) open a key avenue to search for these new states via exotic heavy Higgs decays. We discuss in detail the different search channels for these new scalars at the LHC in the presence of a sizable mass splitting, i.e. a hierarchical 2HDM scenario, taking into account the theoretical and experimental constraints. We provide benchmark planes to exploit the complementarity among these searches, analyzing their potential to probe the hierarchical 2HDM parameter space during LHC Run 2.
|
65 |
Calculations of multi-particle processes at the one-loop level: precise predictions for the LHC / Berechnung von Vielteilchenprozessen auf Einschleifenniveau : präzise Vorhersagen für den Large Hadron ColliderKarg, Stefan January 2007 (has links) (PDF)
The Standard Model (SM) of elementary particle physics provides a uniform framework for the description of three fundamental forces, the electromagnetic and weak forces, describing interactions between quarks and leptons, and the strong force, describing a much stronger interaction between the coloured quarks. Numerous experimental tests have been performed in the last thirty years, showing a spectacular agreement with the theoretical predictions of the Standard Model, even at the per mille level, therefore validating the model at the quantum level. An important cornerstone of the Standard Model is the Higgs mechanism, which provides a possible explanation of electroweak symmetry breaking, responsible for the masses of elementary fermions and the W and Z bosons, the carriers of the weak force. This mechanism predicts a scalar boson, the Higgs boson, which has escaped its discovery so far. If the Higgs mechanism is indeed realised in nature, the upcoming Large Hadron Collider (LHC) at CERN will be able to find the associated Higgs boson. The discovery of a Higgs boson by itself is not sufficient to establish the Higgs mechanism, the basic ingredient being the Higgs potential which predicts trilinear and quartic couplings. These have to be confirmed experimentally by the study of multi-Higgs production. We therefore present a calculation of the loop-induced processes gg to HH and gg to HHH, and investigate the observability of multi-Higgs boson production at the LHC in the Standard Model and beyond. While the SM cross sections are too small to allow observation at the LHC, we demonstrate that physics beyond the SM can lead to amplified, observable cross sections. Furthermore, the applicability of the heavy top quark approximation in two- and three-Higgs boson production is investigated. We conclude that multi-Higgs boson production at the SuperLHC is an interesting probe of Higgs sectors beyond the SM and warrants further study. Despite the great success of the SM, it is widely believed that this model cannot be valid for arbitrarily high energies. The LHC will probe the TeV scale and theoretical arguments indicate the appearance of physics beyond the SM at this scale. The search for new physics requires a precise understanding of the SM. Precise theoretical predictions are needed which match the accuracy of the experiments. For the LHC, most analyses require next-to-leading order (NLO) precision. Only then will we be able to reliably verify or falsify different models. At the LHC, many interesting signatures involve more than two particles in the final state. Precise theoretical predictions for such multi-leg processes are a highly nontrivial task and new efficient methods have to be applied. The calculation of the process PP to VV+jet at NLO is an important background process to Higgs production in association with a jet at the LHC. We compute the virtual corrections to this process which form the "bottleneck" for obtaining a complete NLO prediction. The resulting analytic expressions are generated with highly automated computer routines and translated into a flexible Fortran code, which can be employed in the computation of differential cross sections of phenomenological interest. The obtained results for the virtual corrections indicate that the QCD corrections are sizable and should be taken into account in experimental studies for the LHC. / Das Standardmodell der Teilchenphysik bietet einen einheitlichen Rahmen zur Beschreibung dreier fundamentaler Kräfte. Die elektromagnetische und schwache Kraft beschreibt die Wechselwirkung zwischen Quarks und Leptonen, während die weit stärkere starke Kraft nur auf die farbgeladenen Quarks wirkt. Die zahlreichen experimentellen Tests, die in den vergangenen 30 Jahren durchgeführt wurden, sind in spektakulärer Übereinstimmung mit den theoretischen Vorhersagen des Standardmodells, sogar auf dem pro mille Niveau und bestätigen damit das Modell auf dem Quantenniveau. Ein Grundpfeiler des Standardmodells ist der Higgsmechanismus, der eine mögliche Erklärung für die elektro-schwache Symmetriebrechung liefert, die verantwortlich ist für die beobachteten Massen elementarer Fermionen und der W und Z Bosonen, den Trägern der schwachen Kraft. Dieser Mechanismus sagt ein skalares Boson, das Higgs Boson, voraus, das bisher noch nicht entdeckt wurde. Falls dieser Mechanismus wirklich in der Natur realisiert ist, wird der Large Hadron Collider (LHC) am CERN in der Lage sein, das zugehörige Higgs Boson zu entdecken. Die Entdeckung des Higgs Bosons für sich alleine gestellt reicht nicht aus, um den Higgsmechanismus zu etablieren, dessen zentraler Bestandteil das Higgspotential ist, welches trilineare und quartische Selbstkopplungen vorhersagt. Diese müssen im Experiment durch die Analyse von multipler Higgsproduktion bestätigt werden. Wir präsentieren daher die Berechnung der schleifen-induzierten Prozesse gg nach HH und gg nach HHH und untersuchen die Observierbarkeit von multipler Higgsproduktion am LHC im Rahmen des Standardmodells und darüber hinaus. Da die Standardmodell-Wirkungsquerschnitte zu klein sind, um die Produktion von drei Higgs Bosonen am LHC zu beobachten, zeigen wir, dass Physik jenseits des Standardmodells zu verstärkten und damit beobachtbaren Wirkungsquerschnitten führen kann. Darüber hinaus wird die Anwendbarkeit der Näherung eines schweren top Quarks auf die Produktion von zwei und drei Higgs Bosonen untersucht. Wir kommen zu dem Schluss, dass multiple Higgsproduktion am Super-LHC eine interessante Sonde des Higgs Sektors ist und weitere Untersuchungen rechtfertigt. Trotz des großartigen Erfolgs des Standardmodells wird weithin vermutet, dass dieses Modell seine Gültigkeit nicht bis zu beliebig hohen Energieskalen behält. Theoretische Argumente deuten auf Anzeichen neuer Physik jenseits des Standardmodells auf der TeV Skala hin, die der LHC untersuchen wird. Die Suche nach neuer Physik erfordert ein detailliertes Verständnis des Standardmodells. Präzise theoretische Vorhersagen sind nötig, die der experimentellen Genauigkeit der Experimente entsprechen. Für den LHC sind die meisten Analysen in nächst-führender Ordnung (NLO) erforderlich. Nur dann werden wir verlässlich erweiterte Modelle bestätigen oder falsifizieren können. Am LHC sind viele interessante Signaturen verknüpft mit Endzuständen, die mehr als zwei Teilchen beinhalten. Präzise theoretische Vorhersagen für solche Multiple-Teilchen-Prozesse stellen eine sehr große Herausforderung dar, für die neue und effiziente Methoden verwendet werden müssen. Die Berechnung des Prozesses PP nach VV+jet in nächst-führender Ordnung ist ein wichtiger Hintergrundprozess für die Higgsproduktion in Assoziation mit einem Jet am LHC. Wir berechnen die virtuellen Korrekturen zu diesem Prozess, welche die größte Schwierigkeit darstellt, eine Vorhersage mit NLO Präzision zu erhalten. Die resultierenden analytischen Ausdrücke wurden weitgehend automatisiert erzeugt und in einen flexiblen Fortran Code übersetzt, der für die Berechnung von totalen und differentiellen Wirkungsquerschnitten von phänomenologischem Interesse verwendet werden kann. Die erzielten Ergebnisse für die virtuellen Korrekturen deuten auf große QCD Korrekturen hin, die in experimentellen Studien für den LHC berücksichtigt werden sollten.
|
66 |
Measurement of the Higgs boson production in the H → ττ → τlepτhad decay channel at √s = 13 TeV with the ATLAS detector at the LHCDe Maria, Antonio 05 July 2018 (has links)
Questa tesi presenta la misura della produzione del bosone di Higgs all’interno del Modello Standard nel decadimento H → ττ con particolare enfasi allo stato finale in cui uno dei due τ decade adronicamente e l’altro decade leptonicamente (canale H → ττ → τlepτhad). L’analisi utilizza un campione di dati corrispondenti a 36.1 fb−1 registrati dal rivelatore ATLAS durante il Run 2 nel periodo di presa dati 2015 e 2016 ad un’energia nel centro di massa √s = 13 TeV.
Il decadimento del bosone di Higgs in una coppia di leptoni τ `e attualmente l’unico modo possibile per misurare l’accoppiamento di Yukawa tra il bosone di Higgs ed i lep- toni. In questo contesto, lo stato finale H → ττ → τlepτhad ha un ruolo importante dovuto all’alta frazione di decadimento e ad un fondo moderato.
L’analisi `e basata su una selezione ottimizzata per aumentare la sensitivit`a del segnale
considerando le caratteristiche cinematiche dei principali canali di produzione del bosone
di Higgs: la fusione di gluoni e la fusione di bosoni vettori.
I risultati sono stati estratti da un profile likelihood fit sulla massa della coppia di
τ e saranno presentati considerando prima solamente lo stato finale τlepτhad e poi con-
siderando tutti i possibili stati finali derivanti dai decadimenti dei due τ. Considerando il
fit combinato, sono stati misurati la signal strength μ = 1.08+0.175(stat.)+0.265(syst.) ed il −0.171 −0.222
prodottodellesezionid’urtoperlefrazionididecadimentoσHττ(VBF) = 0.28+0.09(stat.) −0.09
+0.10(syst.) pb, σHττ(ggH) = 2.97+1.03(stat.)+1.67(syst.) pb. I risultati sono in buon ac- −0.09 −1.01 −1.23
cordo con le previsioni del Modello Standard all’interno delle incertezze stimate. La significativit`a osservata (attesa), considerando solo i dati raccolti nel Run 2, `e 4.36 (4.13) deviazioni standard rispetto all’ipotesi di solo fondo. Dalla combinazione dei dati raccolti nel Run 1 e nel Run 2 si ottiene una significativita` di 6.37 (5.43), che `e superiore alla soglia di 5 deviazioni standard stabilita per l’osservazione di un nuovo processo.
|
67 |
Search for di-Higgs production to the b¯bτ +τ − final state using Support Vector Machines with the ATLAS detector at the Large Hadron Collider in pp collisions at √s = 13TeVStevenson, Thomas James January 2018 (has links)
This thesis presents a search for resonant and standard model non-resonant di-Higgs production in theb¯bτ +τ− decay channel, with the semi-leptonic ditau state. The search uses data collected by the ATLAS experiment at the LHC of pp-collisions at √s=13 TeV during 2015 and 2016, corresponding to an instantaneous luminosity of 36:1fb-1. No deviation from the Standard Model prediction is observed. For the non-resonant standard model di-Higgs production an upper limit is set on the cross-section compared to the Standard Model prediction,σ/σSM< 24:44 @ 95%CL. Upper limits are set on the cross-section times branching ratio for the resonant searches, where the results are interpreted in terms of constraints on a 2HDM heavy scalar Higgs model and a Randall-Sundrum Kaluza-Klein graviton model. The use of Support Vector Machines is investigated and benchmarked against the nominal results of the Boosted Decision Tree multivariate analysis, in pursuit of potential future improvements.
|
68 |
Searches for neutral Higgs bosons in qq̄ [tau] [supersciprt+] [tau] [superscript-] final states using the OPAL detector at LEP /Hocker, James Andrew. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Physics, December 2000. / Includes bibliographical references (p. 146-149). Also available on the Internet.
|
69 |
On the metastability of the Standard ModelBaum, Sebastian January 2015 (has links)
With the discovery of a particle consistent with the Standard Model (SM) Higgs at the Large Hadron Collider (LHC) at CERN in 2012, the final ingredient of the SM has been found. The SM provides us with a powerful description of the physics of fundamental particles, holding up at all energy scales we can probe with accelerator based experiments. However, astrophysics and cosmology show us that the SM is not the final answer, but e.g. fails to describe dark matter and massive neutrinos. Like any non-trivial quantum field theory, the SM must be subject to a so-called renormalization procedure in order to extrapolate the model between different energy scales. In this context, new problems of more theoretical nature arise, e.g. the famous hierarchy problem of the Higgs mass. Renormalization also leads to what is known as the metastability problem of the SM: assuming the particle found at the LHC is the SM Higgs boson, the potential develops a second minimum deeper than the electroweak one in which we live, at energy scales below the Planck scale. Absolute stability all the way up to the Planck scale is excluded at a confidence level of about 98 %. For the central experimental SM values the instability occurs at scales larger than ~ 10¹⁰ GeV. One can take two viewpoints regarding this instability: assuming validity of the SM all the way up to the Planck scale, the problem does not necessarily lead to an inconsistency of our existence. If we assume our universe to have ended up in the electroweak minimum after the Big Bang, the probability that it would have transitioned to its true minimum during the lifetime of the universe is spectacularly small. If we on the other hand demand absolute stability, new physics must modify the SM at or below the instability scale of ~ 10¹⁰ GeV, and we can explore which hints the instability might provide us with on this new physics. In this work, the metastability problem of the SM and possible implications are revisited. We give an introduction to the technique of renormalization and apply this to the SM. We then discuss the stability of the SM potential and the hints this might provide us with on new physics at large scales. / Standardmodellen inom partikelfysik är vår bästa beskrivning av elementarpartiklarnas fysik. År 2012 hittades en ny skalär boson vid Large Hadron Collider (LHC) på CERN, som är kompatibel med att vara Higgs bosonen, den sista saknade delen av Standardmodellen. Men även om Standardmodellen ger oss en väldigt precis beskrivning av all fysik vi ser i partikelacceleratorer, vet vi från astropartikelfysik och kosmologi att den inte kan vara hela lösningen. T.ex. beskriver Standardmodellen ej mörk materia eller neutrinernas massa. Som alla kvantfältteorier måste man renormera Standardmodellen för att få en beskrivning som fungerar på olika energiskalor. När man renormerar Standardmodellen hittar man nya problem som är mer teoretiska, t.ex. det välkända hierarkiproblemet av Higgsmassan. Renormering leder också till vad som kallas för metastabilitetsproblemet, dvs att Higgspotentialen utvecklar ett minimum som är djupare än det elektrosvaga minimum vi lever i, på högre energiskalor. Om vi antar att partikeln som hittades på CERN är Standardmodellens Higgs boson, är absolut stabilitet exkluderad med 98 % konfidens. För centrala experimentiella mätningar av Standardmodells parametrar uppkommer instabiliteten på skalor över ~ 10¹⁰ GeV. Det finns två olika sätt att tolka stabilitetsproblemet: Om man antar att Standardmodellen är den rätta teorien ända upp till Planckskalan, kan vi faktiskt fortfarande existera. Om vi antar att universum hamnat i det elektrosvaga minimumet efter Big Bang är sannolikheten att det har gått över till sitt riktiga minimum under universums livstid praktiskt taget noll. Dvs att vi kan leva i ett metastabilt universum. Om vi å andra sidan kräver att potentialen måste vara absolut stabil, måste någon ny fysik modifiera Standardmodellen på eller under instabilitetsskalan ~10¹⁰ GeV. I så fall kan vi fundera på vilka antydningar stabilitetsproblemet kan ge oss om den nya fysiken. Den här uppsatsen beskriver Standardmodells metastabilitetsproblem. Vi ger en introduktion till renormering och använder tekniken till Standardmodellen. Sen diskuteras stabiliteten inom Standardmodellens potential och vilka antydningar problemet kan ge oss angående ny fysik.
|
70 |
Search for Neutral Minimally Supersymmetric Standard Model Higgs Decaying to Two Hadronic Taus with the ATLAS Detector in pp collisions at 7 TeV Center of Mass EnergyDhaliwal, Saminder K. 19 March 2013 (has links)
This thesis presents the first search for a neutral Minimal Supersymmetric Standard
Model Higgs boson decaying to a pair of hadronic taus in proton-proton collisions with
a center-of-mass energy of √s = 7 TeV. Results are presented for an integrated lumi-
nosity of 1.056 fb−1 using data from the ATLAS detector at the Large Hadron Collider.
After signal selection, 245 events are observed. The number of events is consistent the
background estimate of 256 ± 26. An exclusion limit for the Higgs boson production is
derived as a function of (cross-section)×(branching ratio). This limit is presented as a
function of two parameters: mA and tanβ in the mmax scenario. A point in the (mA, h
tanβ) phase space is excluded if the signal hypothesis is rejected at the 95% confidence level.
|
Page generated in 0.049 seconds