• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 5
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 78
  • 78
  • 44
  • 40
  • 30
  • 22
  • 21
  • 19
  • 19
  • 15
  • 14
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Pulvermetallurgische Herstellung und Sinterverhalten des High-Entropy Alloys CoCrFeMnNi

Eißmann, Nadine 18 April 2023 (has links)
Ziel der Arbeit ist es, die Eignung pulvermetallurgischer Verfahren für die spätere industrielle Nutzung, die Werkstoffeigenschaften sowie das Sinterverhalten für High-Entropy Alloys (HEAs) zu evaluieren. Aufgrund des einphasigen Gefüges ist CoCrFeMnNi eine geeignete Modelllegierung, um die grundlegenden Eigenschaften von HEAs zu analysieren und wird im Rahmen dieser Dissertation exemplarisch für die High-Entropy Alloys verwendet. Verdüstes CoCrFeMnNi-Pulver wird mit drucklosem Sintern und Spark Plasma Sintern unter Verwendung von geeigneten Prozessparametern kompaktiert. Ausgewählte mechanische und physikalische Eigenschaften von CoCrFeMnNi werden bestimmt und im Vergleich mit konventionellen Legierungen bewertet. Die festigkeitssteigernden Mechanismen Kornfeinung und Ausscheidungshärtung werden diskutiert. Durch die Zugabe von Titan zu dem inertgasverdüsten HEA-Pulver wird dafür eine aushärtbare Legierung hergestellt. Zum besseren Verständnis der beim Sintern in HEAs ablaufenden Diffusionsvorgänge wird ein Modell zum Ausheilen isolierter Poren anhand eines vereinfachten Systems für einen binären Mischkristall entwickelt und diskutiert. Des Weiteren wird die Aktivierungsenergie beim Sintern anhand von Schwindungsversuchen berechnet und anschließend mit konventionellen Legierungen verglichen.
22

Exploration of New High Entropy Alloys (HEA) and HEA-reinforced Metal Matrix Composites Using a CALPHAD-based Approach

Huang, Xuejun January 2021 (has links)
No description available.
23

MECHANISTIC UNDERSTANDING OF PHASE STABILITY, TRANSFORMATION, AND STRENGTHENING MECHANISMS IN LIGHTWEIGHT HIGH ENTROPY ALLOYS AND HIGH ENTROPY CERAMICS

Walunj, Ganesh Shankar 01 September 2022 (has links)
No description available.
24

Multicomponent TiNbCrAl nitride films produced by DCMS and HiPIMS

Sadowski, Grzegorz January 2021 (has links)
High entropy alloys (HEAs) are made of at least five principal elements in near-equimolar proportions. The vast number of possible alloys and unconventional combinations of properties are the main benefits of HEAs. Ti, Nb, Cr, Al and N were chosen in order to create a hard, corrosion resistant coating with good thermal stability. TiNbCrAl multicomponent nitride thin films with Ti content between 0 to 14.4 at.% were deposited using multi-magnetron reactive high power impulse magnetron sputtering (R-HiPIMS) to investigate the feasibility of this method and to study how the Ti content affects the properties of the film. The samples deposited using reactive direct current magnetron sputtering (R-DCMS) were used as benchmarks. The settings required for near-equimolar composition were fixed, with Ti magnetron power as the only variable. Substrate was grounded and not intentionally heated. The composition of HiPIMS samples was more stable while the DCMS samples had significant fluctuations in Al and N content when varying the Ti target power, and were understoichiometric in nitrogen, (T iCrN bAl)1N1−δ, due to low degree of ionization of N. All crystalline samples had NaCl-type fcc structure. Crystalline DCMS samples were (111) textured, while the higher ionization characteristic for HiPIMS resulted in samples with competitive growth between two growth directions. The energetic particle bombardment caused the columnar structure of the film to be denser and less jagged, while DCMS samples containing Ti were significantly more porous. Denser, harder and stiffer films with significantly higher compressive stress were produced with HiPIMS. The hardness and stiffness were almost linearly dependent on Ti content, with density slightly decreasing as the Ti content increased. Higher Ti content increased the rate of corrosion of the films.
25

Investigation of Silicon-Based and Multicomponent Electrodes for High Energy Density Li-ion Batteries

Sturman, James 29 November 2023 (has links)
Li-ion batteries have enabled the widespread adoption of portable electronics and are becoming the technology of choice for electric vehicles and grid storage. One of the most promising ways to accommodate this demand is to increase the energy density and cycle life of battery electrode materials. Key strategies promoted in the literature include the use of nickel-rich cathodes as well as high-capacity anodes like silicon and lithium metal. While these materials enable a high energy density, this advantage is often counterbalanced with deficits such as poor stability and high cost. Multicomponent electrodes refer to strategies that try to leverage the relative advantages of different materials to offer an attractive compromise of energy density, cost, and cycle life. This thesis has investigated various aspects of multicomponent electrodes with a special emphasis on silicon-based anodes and high-entropy materials. Silicon (Si) is the second-most abundant element on earth and has one of the highest gravimetric capacities. However, silicon anodes are notorious for their poor cycle stability. Herein, improvements in the stability of silicon-based electrodes are achieved with multicomponent composite strategies involving the use of nanostructured spherical silicon. The nanosilicon is studied in high-fraction (80 wt% Si) and low-fraction (≤20 wt% Si) formulations to investigate both failure mechanisms and practical capacity retention, respectively. Composite strategies in which nanosilicon is encapsulated within a Li₄Ti₅O₁₂ ceramic or MOF-derived carbon matrix are shown to deliver superior capacity retention compared to simple composites of silicon and graphite. Considerable attention is given to the selection of a water-soluble binder and its role in electrochemical stability and electrode cohesion in high-loading silicon electrodes. It is found that unmodified high-molecular-weight sodium carboxymethyl cellulose offers better capacity retention compared to xanthan gum or low-molecular-weight binders. The high-entropy design strategy has created a diverse and largely unexplored set of multicomponent oxides and alloys with great potential as electrode materials. This strategy is applied to the family of layered cathodes, where the synthesis and electrochemical properties of the best-performing Li(NiCoMnTiFe)₁O₂ are reported. Despite the low Ni content, the cathode delivers a high initial capacity with unique overlithiation stability despite being charged to 4.4 V. Throughout the thesis, Operando XRD is used to reveal important insight into the lithiation mechanisms of the multicomponent electrodes including intercalation-based graphite, alloying-based silicon, and a novel organic azaacene.
26

SYNTHESIS, SINTERING, AND ELECTRONIC CONDUCTIVITY STUDIES OF MEDIUM- AND HIGH-ENTROPY PEROVSKITE OXIDES

Gajjala, Sai Ram 01 May 2023 (has links) (PDF)
The application of the entropy concept to stabilize oxide systems opens the possibility of discovering new materials with unique structural and functional properties. High-entropy alloys and oxides, which are based on the entropy stabilization concept and composed of multi-principal elements, have the potential to tailor structural and functional properties to meet specific needs. The study of lanthanum-based perovskite materials that benefit from the entropy stabilization approach is a promising area of research.However, the inherent randomness of multi-principal elements presents new challenges, making it difficult to predict their behavior. To understand these difficulties, we have initiated a methodical investigation of La-based medium- and high-entropy perovskite oxides. This study focuses on the synthesis, characterization, sintering mechanism, and electrical conductivity properties of nine La1-xCax(A1/3, B1/3, C1/3)O3 medium-entropy perovskite oxide systems (A, B, and C = three combination of Cr or Co or Fe or Ni or Mn) and one La1-xCax(Cr0.2Co0.2Fe0.2Ni0.2Mn0.2)O3 high-entropy perovskite oxide system (for x = 0.1 to 0.3). This research aims to provide better understanding of: (1) synthesis process, (2) temperature of single-phase formation, (3) the impact of various combinations of multiple B-site transitional elements and Ca doping on crystal structure, and microstructure (4) sintering mechanism and (5) electrical conductivity properties.
27

Atomistic Modeling of Defect Energetics and Kinetics at Interfaces and Surfaces in Metals and Alloys

Alcocer Seoane, Axel Emanuel 02 January 2024 (has links)
Planar defects such as free surfaces and grain boundaries in metals and alloys play important roles affecting many material properties such as fracture toughness, corrosion resistance, wetting, and catalysis. Their interactions with point defects and solute elements also play critical roles on governing the microstructural evolution and associated property changes in materials. This work seeks to use atomistic modeling to obtain a fundamental understanding of many surface and interface related properties and phenomena, namely: orientation-dependent surface energy of elemental metals and alloys, segregation of solute elements at grain boundaries and their impact on grain boundary cohesive strength, and the controversial sluggish diffusion in both the bulk and grain boundaries of high entropy alloys. First, an analytical formula is derived, which can predict the surface energy of any arbitrary (h k l) crystallographic orientation in both body-centered-cubic (BCC) and face-centered-cubic (FCC) pure metals, using only two or three low-index (e.g., (100), (110), (111)) surface energies as input. This analytical formula is validated against 4357 independent single element surface energies reported in literature or calculated by the present author, and it proves to be highly accurate but easy to use. This formula is then expanded to include the simple-cubic (SC) structure and tested against 4542 surface energies of metallic alloys of different cubic structures, and good agreement is achieved for most cases. Second, the effect of segregation of substitutional solute elements on grain boundary cohesive strength in BCC Fe is studied. It is found that the bulk substitution energy can be used as an effective indicator to predict the embrittlement or strengthening potency induced by the solute segregation at grain boundaries. Third, the controversial vacancy-mediated sluggish diffusion in an equiatomic FeNiCrCoCu FCC high entropy alloy is studied. Many literature studies have postulated that the compositional complexity in high entropy alloys could lead to sluggish diffusion. To test this hypothesis, this work compares the vacancy-mediated self-diffusion in this model high entropy alloy with a hypothetical single-element material (called average-atom material) that has similar average properties as the high entropy alloy but without the compositional complexity. The results show that the self-diffusivities in the two bulk systems are very similar, suggesting that the compositional complexity in the high entropy alloy may not be sufficient to induce sluggish diffusion in bulk high entropy alloys. Based on the knowledge learned from the bulk alloy, the exploration of the possible sluggish diffusion has been extended to grain boundaries, using a similar approach as in the study of self-diffusion in bulk. Interestingly, the results show that sluggish diffusion is evident at a Σ5(210) grain boundary in the high entropy alloy due to the compositional complexity, especially in the low temperature regime, which is different from the bulk diffusion. The underlying mechanisms for the sluggish diffusion at this grain boundary is discussed. / Doctor of Philosophy / Human beings have utilized metals and alloys for over ten millennia and learned much from them. Based on the accumulated knowledge, they have countless applications in our current daily life. However, there is still much to learn for improving our current technology and even opening new opportunities. Throughout most of history, our understanding of these materials was largely obtained through empirical experimentation and refining them into theories and scientific laws. Nowadays, due to the advancements in computer simulations, we can learn more by modeling the behaviors of metals and alloys at the length and time scales that are either be too arduous, costly, or currently impossible experimentally. This work aims at using computer modeling to study some important surface/interface related physical behaviors and properties in metals and alloys at the atomistic scale. First, this work intends to develop a robust surface energy model in an analytical form for any crystallographic orientation. Surface energy is an important material property for many surface-related processes such as fracturing, wetting, sintering, catalysis, and crystalline particle shape. Surface energy is different at different surface orientations, and predicting this difference is important for understanding these surface phenomena. Second, the effect of solute segregation on grain boundary cohesive strength is studied. Most commonly used metallic materials consist of many small crystalline grains and the borders between them are called grain boundaries, which are weak spots for fracture. The minimum energy required to split a boundary is called the grain boundary cohesive strength. The presence of solutes or impurities at grain boundaries can further alter the cohesive strength. A better understanding of this phenomena will eventually help us develop more fracture-resistant materials. The third project deals with the possible sluggish/retarded diffusion in high entropy alloys, which contain five or more principal alloying elements and have many unique mechanical, radiation-resistant, and corrosion-resistant properties. Many researchers attribute these unique properties to the slow species diffusion in these alloys, but its existence is still controversial. This work studies the atomic-level diffusion mechanisms in an FeNiCrCoCu high entropy alloy both in bulk (grain interior) and at grain boundaries in order to determine if sluggish diffusion is present and its causes.
28

Microstructure and mechanical properties of face-centered cubic high/medium entropy alloys:From a viewpoint of heterogeneity on atomic-scale / FCC構造を有する高・中工ントロピー合金の材料組織と力学特性:原子スケールの不均一性の観点から

Yoshida, Shuhei 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23157号 / 工博第4801号 / 新制||工||1751(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 乾 晴行, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
29

HIGH-THROUGHPUT CALCULATIONS AND EXPERIMENTATION FOR THE DISCOVERY OF REFRACTORY COMPLEX CONCENTRATED ALLOYS WITH HIGH HARDNESS

Austin M Hernandez (12468585) 27 April 2022 (has links)
<p>Ni-based superalloys continue to exert themselves as the industry standards in high stress and highly corrosive/oxidizing environments, such as are present in a gas turbine engine, due to their excellent high temperature strengths, thermal and microstructural stabilities, and oxidation and creep resistances. Gas turbine engines are essential components for energy generation and propulsion in the modern age. However, Ni-based superalloys are reaching their limits in the operating conditions of these engines due to their melting onset temperatures, which is approximately 1300 °C. Therefore, a new class of materials must be formulated to surpass the capabilities Ni-based superalloys, as increasing the operating temperature leads to increased efficiency and reductions in fuel consumption and greenhouse gas emissions. One of the proposed classes of materials is termed refractory complex concentrated alloys, or RCCAs, which consist of 4 or more refractory elements (in this study, selected from: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) in equimolar or near-equimolar proportions. So far, there have been highly promising results with these alloys, including far higher melting points than Ni-based superalloys and outstanding high-temperature strengths in non-oxidizing environments. However, improvements in room temperature ductility and high-temperature oxidation resistance are still needed for RCCAs. Also, given the millions of possible alloy compositions spanning various combinations and concentrations of refractory elements, more efficient methods than just serial experimental trials are needed for identifying RCCAs with desired properties. A coupled computational and experimental approach for exploring a wide range of alloy systems and compositions is crucial for accelerating the discovery of RCCAs that may be capable of replacing Ni-based superalloys. </p> <p>In this thesis, the CALPHAD method was utilized to generate basic thermodynamic properties of approximately 67,000 Al-bearing RCCAs. The alloys were then down-selected on the basis of certain criteria, including solidus temperature, volume percent BCC phase, and aluminum activity. Machine learning models with physics-based descriptors were used to select several BCC-based alloys for fabrication and characterization, and an active learning loop was employed to aid in rapid alloy discovery for high hardness and strength. This method resulted in rapid identification of 15 BCC-based, four component, Al-bearing RCCAs exhibiting room-temperature Vickers hardness from 1% to 35% above previously reported alloys. This work exemplifies the advantages of utilizing Integrated Computational Materials Engineering- and Materials Genome Initiative-driven approaches for the discovery and design of new materials with attractive properties.</p> <p> </p> <p><br></p>
30

Design and Development of Light Weight High Entropy Alloys

Gondhalekar, Akash Avinash January 2019 (has links)
The main aim of this thesis was to design and develop new Aluminium based compositionally complex alloys (CCAs) using the high entropy alloy (HEA) concept, and to understand their evolution of microstructures during casting and also after the secondary process which is heat-treatment, and finally to evaluate their subsequent mechanical properties. Prior to the development of alloys, a computational technique ThermoCalc was used which helped in understanding the phase formation in various results. Use of thermodynamic physical parameters for predicting the stability of single-phase fields was done to assess their validity in predicting the compositional regions of the alloys developed. The first alloy developed is Al73.6Mg18Ni1.5Ti1.9Zr1Zn4 in at% (NiTiZrZn) CCA. The microstructure consists of the FCC as a primary phase with ~49% volume fraction along with β-AlMg and intermetallic (IM) phases including Al3Ni, Al3Ti, and Al3Zr. After casting, the microstructure showed some presence of eutectic structures. The Al3Ti, and Al3Zr IM phases seemed to precipitate early which led to less homogenization of Ti and Zr, causing deviation in the amount of these elements in the matrix. Further, the CCA was heat-treated at 375 oC for 24hrs and 48hrs and the evolution of microstructure along with its hardness and phase transformation characterisation was investigated. The second developed alloy was quaternary Al65.65Mg21.39Ag10.02Ni2.94 in at% (AgNi) CCA. In the as-cast state, the main phase (matrix) was FCC with ~64 % volume fraction along with BCC, β-AlMg and Al3Ni IM phases. There was a good level homogenization of all elements in the alloy. They were further heat- treated at 400 oC for 24 hrs and 48 hrs and were studied for any change in microstructure along with its hardness and thermal stability. This CCA had the highest hardness value from all developed CCAs. Lastly, in order to check how Ni affects the microstructure and properties of (AgNi) CCA, a ternary Al67.2Mg22.09Ag10.7 in at% (Ag) CCA was developed. The composition was kept such that it is exactly 97% by excluding the Ni. During the development of this alloy, the cast was cooled in two ways first being the normal cooled just like other CCAs and second being a fast cooling method. Both of these alloys consists of the FCC phase as a primary phase with 72% volume fraction along with BCC and β-AlMg. Both of them were also heat treated at 400 oC for 24 hrs and 48 hrs to evaluate any changes in microstructure and also to assess its hardness and thermal stability.

Page generated in 0.0504 seconds