• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extending the pump energy range for a pump-probe system using High Harmonics Generation

FLE, Guillaume January 2015 (has links)
No description available.
2

Generation of short and intense attosecond pulses

Khan, Sabih ud Din January 1900 (has links)
Doctor of Philosophy / Department of Physics / Brett DePaola / Zenghu Chang / Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ~100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ~20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ~9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ~100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract intense SAP from an APT driven by blue laser pulses. We also demonstrated compression of long blue pulses into >240 µJ broad-bandwidth pulses using neon filled hollow core fiber, which is the highest reported pulse energy of short blue pulses. However, compression of phase using chirp mirrors is still a technical challenge.
3

Extreme Ultraviolet Polarimetry with Laser-Generated High-Order Harmonics

Brimhall, Nicole 09 July 2007 (has links) (PDF)
We developed an extreme ultraviolet (EUV) polarimeter, which employs laser-generated high-order harmonics as the light source. This relatively high-flux directional EUV source has available wavelengths between 8 nm and 62 nm and easily rotatable linear polarization. The polarimeter will aid researchers at BYU in characterizing EUV thin films and improving their understanding of materials for use in EUV optics. This first-time workhorse application of laser high harmonics enables polarization-sensitive reflection measurements not previously available in the EUV. We have constructed a versatile positioning system that places harmonics on the microchannel plate detector with an accuracy of 0.3 mm, which allows a spectral resolution of about 180. We have demonstrated that reflectance as low as 0.2% can be measured at EUV wavelengths and that this data is repeatable to within the error of our source stability (~7% fluctuation). We have compared reflectance data with that taken from the same sample at Beamline 6.3.2 at the Advanced Light Source. This data agrees well from 5 degrees to 30 degrees and the angular locations of the interference fringes also agree.
4

Controlling Laser High-Order Harmonic Generation Using Weak Counter-Propagating Light

Voronov, Sergei Leonidovich 16 December 2002 (has links) (PDF)
Laser high-order harmonic generation in the presence of relatively weak interfering light is investigated. The interfering pulses intersect the primary harmonic-generating laser pulse at the laser focus. The interfering light creates a standing intensity and phase modulation on the field, which disrupts microscopic phase matching and shuts down local high harmonic production. Suppression of the 23rd harmonic (by two orders of magnitude) is observed when a counter-propagating interfering pulse of light is introduced. A sequence of counter-propagating pulses can be used to shut down harmonic production in out-of-phase zones of the generating volume to achieve quasi phase matching. Harmonic emission is enhanced in this case. A new high-power laser system with higher pulse energy has been constructed to further investigate quasi phase matching of high-order harmonics generated in difficult-to-ionize atomic gases (e.g., neon as opposed to argon). The new system can also be used to study harmonic generation in ions. A new counter-propagating beam produces a train of 5 pulses with regulated timing. In preliminary tests, the new system has produced high harmonics up to the 65th order in neon. This should increase with additional adjustments to the laser system. The high-order harmonics have also demonstrated to be useful for polarized reflectometry measurements of optical surfaces in the extreme ultraviolet (EUV) wavelength range.
5

Tabletop Extreme-Ultraviolet Source Using High Harmonic Generation for Polarization Sensitive Imaging

Buckway, Taylor Jordan 12 May 2022 (has links)
We are developing a tabletop extreme-ultraviolet source using high harmonic generation at Brigham Young University. The thesis goes over the theory of high harmonic generation using the three-step model. This tabletop source was designed for probing magnetic domains of iron nanoparticles. We present optimization of the 42 eV and 52 eV harmonics through phase matching. Phase matching consists of tuning the intensity of the IR beam and pressure of the gas medium. The target gas medium used for this thesis is argon. The 42 eV harmonic was optimized to 8.2 billion photons per second. This was used with a 1500 mm focal-length lens, 15 mm medium length, laser power of 1.53 Watts, and a pressure of 12 Torr of argon gas. The 52 eV harmonic was optimized to 1.5 billion photons per second with a 1500 mm focal-length lens, 20 mm medium length, laser power of 3.29 W, and 14.9 Torr of argon gas. There are two designs for selection of harmonics: 1) a tunable design consisting of a toroidal mirror and flat diffraction grating and 2) a set of normal-incidence extreme-ultraviolet mirrors designed for 42 or 52 eV photons. Magnetic imaging uses x-ray magnetic circular dichroism to obtain magnetic contrast and use it to visualize magnetic nanosystems. Therefore, the high harmonic source also needs to generate circularly polarized light. Generating circularly polarized high harmonics is possible with a bichromatic beam. This is achieved using an apparatus called the MAZEL-TOV designed by Oren Cohen’s group at Technion University in Israel. The MAZEL-TOV consists of a BBO crystal for second harmonic generation, a pair of pulse delay compensation plates, and a quarter-wave plate. These optics are placed inline with the laser beam. We have successfully optimized the circularly polarized extreme-ultraviolet harmonics with the MAZEL-TOV. A spectrometer was made to calibrate the harmonics in the MAZEL-TOV spectrum. The tabletop source was then used to demonstrated coherent diffraction imaging of two pinholes.
6

Μελέτη φασμάτων εκπομπής και δημιουργία υψηλών αρμονικών σε ημιαγώγιμα κβαντικά πηγάδια αλληλεπιδρώντα με εξωτερικά πεδία

Αναστόπουλος, Ελευθέριος 07 October 2011 (has links)
Μελετάμε θεωρητικά το φάσμα εκπομπής και την δημιουργία υψηλών αρμονικών σε ημιαγώγιμη κβαντική δομή, παρουσία εξωτερικών ηλεκτρομαγνητικών πεδίων τα οποία αλληλεπιδρούν με δύο υποζώνες του κβαντικού συστήματος. Στην μελέτη μας λαμβάνουμε υπόψη το φαινόμενο της αλληλεπίδρασης ηλεκτρονίου-ηλεκτρονίου. Για την περιγραφή της δυναμικής του συστήματος χρησιμοποιούμε τις μη γραμμικές διαφορικές εξισώσεις των στοιχείων του πίνακα πυκνότητας, στα πλαίσια της προσέγγισης περιστρεφόμενου πεδίου. Οι διαφορικές εξισώσεις της μήτρας πυκνότητας λύνονται αριθμητικά για κβαντικό πηγάδι GaAs/GaAlAs. Δείχνουμε ότι το φάσμα εκπομπής και η δημιουργία υψηλών αρμονικών εξαρτάται από τα γεομετρικά χαρακτηριστκά της δομής, από τις παραμέτρους του εξωτερικού πεδίου (συχνότητα και ένταση), και από την επιφανειακή πυκνότητα ηλεκτρονίων. / We study theoretically the emission spectrum and the generation of high harmonics in a two-subband system in a semiconductor quantum well structure. In our study we take into account the effects of electron-electron interactions and consider the interaction of the two-subband system with external electromagnetic fields. For the description of the system dynamics we use the nonlinear differential equations of the density matrix elements, under the rotating wave approximation. These equations are solved numerically for a GaAs/AlGaAs quantum well structure. We show that the emission spectrum and the generation of high harmonics depends on the geometrical characteristics of the system, the external parameters (frequency and intensity of the applied fields) and on the electron sheet density.

Page generated in 0.0407 seconds