• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase modulated fibre amplifier array for high power real-time arbitrary beam shaping

Han, Jiho January 2017 (has links)
No description available.
2

Coupling between Ultra High-Power Laser Diodes and Fibers

Wang, Kuo-liang 11 July 2005 (has links)
The width of an ultra high-power laser diode is greater than 50 £gm and more than 20 times of low-power laser diode.The core diameter of Erbium Doped Fiber Amplifier fiber (EDFA) is 4~6 £gm and it is a single-mode fiber (SMF).However¡Athe ultra high-power laser diode is multi-mode laser. Therefore¡Athe mismatch between high-power laser and SMF resulting in low coupling efficiency. We improve coupling efficiency by using a wedge-shaped graded-index fiber (GIF) tip spliced to a SMF then fused a fiber bragg grating (FBG) to form an external cavity laser. The GIF is a focusing action like a graded-index fiber. From near-field pattern (NFP)¡Awe find the best GIF length is 400 £gm. The coupling efficiency between ultra high-power laser diode and wedge-shape lensed fiber is only 5% .
3

A Study of Elliptical Fiber Microlenses

Yeh, Szu-ming 20 September 2006 (has links)
Two new schemes of fiber microlenses for coupling between the high-power 980nm laser diodes and single-mode fibers (SMFs) are proposed. The quadrangular-pyramid-shaped fiber microlens (QPSFM) is fabricated by grinding a quadrangular-pyramid-shaped endface and then through heating in a fusing splicer to form an elliptical microlens endface. In comparison to the traditional wedge-shaped fiber microlens, the QPSFM structure can control two axial curvatures to form an elliptical microlens endface, and then control the aspect ratio of fiber far-field pattern to match the elliptical mode fields of lasers. The coupling efficiency of 83% for the QPSFM has been demonstrated. Another scheme of fiber microlens is the conical-wedge-shaped fiber microlens (CWSFM). The CWSFM is fabricated by grinding a conical-shaped fiber endface, then grinding a pair of wedge planes on the conical-shaped fiber endface, and finally through heating in a fusing splicer to form a good elliptical microlens endface. The coupling efficiency of 84% for CWSFM has been demonstrated. The fabrication of QPSFM requires five-step grinding processes. The range of grinding offset is 0.5~3.0£gm, and the average of grinding offset is 1.5£gm. The fabrication yield of QPSFM is low due to the large grinding offset. The fabrication of CWSFM requires only three-step grinding processes. The range of grinding offset is 0.3~1.5£gm, the average of grinding offset is 0.8£gm. The fabrication yield of CWSFM is high due to the small grinding offset. The fabrication yield is about 60% for 70% coupling efficiency; whereas the fabrication yield becomes 96% for 60% coupling efficiency. The laser-to-SMFs coupling of the fiber microlens was modeled based on the diffraction theory. The coupling efficiency, the tolerance of alignment, and the tolerance of fiber microlens offset were calculated according to this model. There is a good agreement between the simulation and the experiment values. In this study, two new scheme of fiber microlenses of the QPSFM and CWSFM with high coupling efficiency have been demonstrated. The CWSFM structure has the benefits of simple process and high yield that is suitable for use in commercial high power laser module.
4

Efektivita terapie vysokovýkonným laserem u plantární fasciitidy / The effectiveness of high intensity laser therapy for plantar fasciitis.

Pitnerová, Lenka January 2014 (has links)
Author: Bc. Lenka Pitnerová Title: The effectiveness of high intensity laser therapy for plantar fasciitis Objectives: The aim of this work is to assess the effect of high and low intensity laser therapy for plantar fasciitis compared with therapeutic ultrasound. Methods: The study included 50 patients with diagnose of heel spur syndrome. Patients were divided into three groups according to undergoing therapy. Group A (n = 20) received 10 applications of high intensity laser therapy, group B (n = 20) obtained 10 applications of low intensity laser therapy and group C (n=10) received 10 applications of therapeutic ultrasound. Intensity and character of the pain were assessed before and after therapeutic intervention using non- standardized questionnaire and numeric pain rating scale. For the assessment and description of the results were used standard statistical indicators and methods. Results: High intensity laser therapy had according to the obtained results positive effect on the clinical course of the disease and was markedly more effective than therapeutic ultrasound in treatment of plantar fasciitis. Almost all parameters reached the highest percentage improvement in the group treated with high intensity laser. The results are influenced by a smaller sample of patients and by inhomogeneity of...
5

Progress Towards Attosecond Science with a Turn-Key Industrial-Grade Ytterbium Laser

Truong, Thi Tran Chau 01 January 2023 (has links) (PDF)
Advancements in laser technology over the last decades have allowed compression of laser light pulses to few-femtosecond durations. To obtain even shorter pulses, a new mechanism was required. The discovery of high-order harmonic generation, a non-perturbative nonlinear optical process, allowed the conversion of ultrafast laser pulses into a coherent extreme ultraviolet light (XUV) source of attosecond pulses. The attosecond XUV light source, which corresponds to the natural time and energy scales of electron motion in matter, has provided a tool to capture the fastest dynamics in atoms, molecules, and solids and opened the field of attosecond science. However, the generation of isolated attosecond pulses has traditionally required state-of-the-art, few-cycle Ti:Sapphire laser systems and advanced facilities, which limit its applications in other science fields. Recently, ytterbium-doped solid state and fiber lasers have become attractive tools for ultrafast science and industrial applications, due largely to their prospects for scaling to high peak- and average power and their turn-key operation. However, applying these sources as driving lasers for attosecond pulse generation is challenging due to their long pulse durations. In this dissertation, I discuss progress towards attosecond time-resolved experiments using a turn-key Yb:KGW laser amplifier. First, we overcome the unfavorable long laser pulse duration by generating broadband, coherent supercontinuum spectra via nonlinear propagation in a molecular gas-filled hollow-core fiber. The pulses are compressed to sub-two-cycle durations using a two-channel field synthesizer, and methods to mitigate thermal effects at high average powers are explored. The laser pulses are characterized using a new single-shot waveform measurement technique based on multiphoton excitation in a solid medium, and we demonstrate its applicability to studies of attosecond field reshaping during nonlinear propagation. Finally, a source of isolated iv attosecond pulses based on a two-stage hollow-core fiber compressor with carrier-envelope phase stabilization and temporal gating is proposed.
6

Carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers

Moon, Eric Wayne January 1900 (has links)
Doctor of Philosophy / Department of Physics / Zenghu Chang / In this research, the carrier-envelope phase (CE phase) evolution of the pulse train from a Kerr-lens mode-locked chirped-mirror dispersion compensated Ti:Sapphire laser oscillator was stabilized. The offset frequency corresponding to the rate of change of the CE phase was obtained by spectrally broadening the oscillator pulses in a photonic crystal fiber and interfering the f and 2f components. An offset frequency linewidth of 100 mHz was obtained and could be locked over several hours. The effect of path length drift in the interferometer used for CE phase stabilization of the laser oscillator was investigated. By stabilizing the path length drift, the interferometer noise was reduced by several orders of magnitude. The CE phase drift through a grating-based chirped-pulse multi-pass amplifier was investigated. Varying the grating separation by 1μm in the stretcher was found to cause a shift of 3.7 +/- 1.2 rad of the CE phase. The CE phase could be stabilized to within 160 mrad rms error by feedback controlling the grating separation. By locking the path length in the f-to-2f interferometer used to stabilize the CE phase of the oscillator pulses, the fast (>3 Hz) CE phase drift of the amplified laser pulses was reduced from 79 to 48 mrad. It was also found that the CE phase could be shifted and set to any value within a 2π range by changing the grating separation. Also, the CE phase could be continuously modulated within a 2π range while maintaining a relative phase error of 171 mrad. The CE phase shift of a grating-based compressor was found to be stabilized to 230 mrad rms. The effect of laser power fluctuation on the CE phase measurement was also investigated. It was found that a 1% fluctuation of the laser energy caused a 160 mrad error in the CE phase measurement. A two-step model is proposed to explain the phase-energy coupling in the CE phase measurement. The model explains the experimentally observed dependence of the group delay between the f and 2f pulses on the laser energy. Few-cycle pulses were CE phase stabilized to 134 mrad rms and were used to perform above-threshold ionization and high harmonic generation.
7

Development Of A Pulsed Fiber Laser For Ladar System

Dulgergil, Ebru 01 August 2012 (has links) (PDF)
In recent years laser technology has increasingly developed with the use of fiber lasers and this has provided the possibility to implement different techniques in the defense industry. LADAR is at the forefront of these techniques. Fiber lasers constitute a perfect source for LADAR systems due to their excellent robustness, compact size and high-power generation capability. In this study we will explore the development of a pulsed fiber laser source for a LADAR system that can obtain high resolution 3D images in eye-safe region. A high power, all fiber integrated erbium system with strictly single mode operation in eye-safe region based on MOPA (master oscillator power amplifier) configuration with seed source and amplifier part was developed. Both the use of an actively mode locked laser with erbium doped fiber and fiber coupled modulated distributed feedback diode laser were investigated as seed sources for the amplifier part. Both erbium doped single clad fiber and erbium-ytterbium doped double clad gain fiber were used in this amplifier system. After amplification of the actively mode locked laser, 12 W of average optical power was obtained through single mode fiber with 1ns pulse duration at 10 MHz which corresponds to 1.2 kW peak power. For the fiber coupled DFB diode laser, 9.5W average power was obtained with around 8 ns duration pulses at 100 kHz and about 9.2 W average power was also obtained with around 700 ps duration pulses at 1 MHz through strictly single mode fiber at the output of the same amplifier system as was used in the actively mode locked seed source. In both cases calculated peak power was around 10 kW v which is estimated as the highest peak power for an all fiber integrated system with single mode operation. The development of such a fiber system with high power capability, compact size and free of misalignment is expected to be useful for LADAR application as well as other areas such as eye surgery, 3D silicon processing or any other material processing applications.
8

Development Of A Picosecond Pulsed Mode-locked Fiber Laser

Yagci, Mahmut Emre 01 January 2013 (has links) (PDF)
Fiber lasers represent the state-of-the-art in laser technology and hold great promise for a wide range of applications because they have a minimum of exposed optical interfaces, very high efficiency, and are capable of exceptional beam quality. In the near future, the most important markets such as micromachining, automotive, biomedical and military applications will begin to use this technology. The scope of this thesis is to design and develop a short picosecond pulsed fiber laser using rare-earth doped fiber as a gain medium. The proposed master oscillator power amplifier (MOPA) will be used to generate pulses with high repetition rates. In this study, first we explain the basic theoretical background of nonlinear optics and fiber laser. Then, the numerical simulation will be introduced to explain how the laser system design and optimization. The simulation is based on nonlinear Schr&ouml / dinger equation with the method of split-step evaluation. The brief theoretical background and simulation results of the laser system will be shown. Finally, the experimental study of the developmental fiber laser system that comprises an oscillator, preamplifier and power amplifier will be discussed.
9

Impact de l’environnement sur l’endommagement laser des optiques de silice du Laser MégaJoule / Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule

Bien-Aimé, Karell Brigitte 23 November 2009 (has links)
Cette thèse vise à connaître et expliquer l’impact de la contamination moléculaire sur l’endommagement laser des optiques en silice d'un laser de puissance tel que le Laser Méga Joule (LMJ). L'une des causes de l'endommagement prématuré de ces optiques est l'adsorption de polluants moléculaires ou particulaires à leur surface. Dans le contexte particulier du LMJ, nos conditions d'études laser sont des fluences supérieures à 10 J/cm², une longueur d’onde de 351 nm et une durée d’impulsion de 3 ns pour une irradiation en monocoup. Des prélèvements moléculaires, l’analyse du dégazage des matériaux, et l’identification de la contamination condensée sur les surfaces des optiques présentes dans des environnements jugés critiques, ont permis de déterminer certains polluants critiques. Des expériences de contamination contrôlée impliquant ces polluants ont alors été menées afin de comprendre et modéliser leur effet sur l'endommagement laser des optiques. Ceci nous a conduits à proposer plusieurs mécanismes supposés. / Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm², a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism.
10

[en] PRELIMINARY STUDIES ON THE USE OF HIGH POWER LASERS FOR PERFORATION OF WELL CASINGS / [pt] ESTUDOS PRELIMINARES SOBRE A APLICAÇÃO DE LASERS DE ALTA POTÊNCIA NA PERFURAÇÃO DE REVESTIMENTOS DE POÇOS

HUGO GOMES DA SILVA 23 November 2018 (has links)
[pt] Esta dissertação faz parte de um projeto mais abrangente que visa caracterizar os parâmetros ideais para perfuração e corte a laser em rochas, metais e cimentos tipicamente utilizados na indústria do petróleo. Este trabalho teve por objetivo de caracterizar cortes a laser em placas de aço. Procurou-se correlacionar a morfologia do corte e a formação de rebarbas com parâmetros operacionais, tais como densidade de potência e posição do ponto focal. O estudo foi desenvolvido para o aço SAE 1020 com e sem anteparo rochoso (Travertino). Foram avaliadas também as mudanças na microestrutura de regiões adjacentes do aço duplex 2205 para diferentes faixas de densidade de potência. Finalmente, avaliou-se também o uso do laser no corte do aço inox submerso em água. Conclui-se que existe uma formação de rebarba, que aumenta conforme a densidade de potência diminui. Por outro lado, quanto maior a densidade de potência, maior é a extensão da mudança na microestrutura do aço. O corte de aço com anteparo rochoso abre novas perspectivas para o desenvolvimento de uma ferramenta baseada em laser de alta potência para completação de poços na indústria do petróleo. / [en] This work is part of a larger project that aims to characterize the optimal parameters for laser cutting and drilling into rocks, metals and cement typically used in the oil industry. This study had as objective to characterize laser cuts in steel plates. An attempt to establish a correlation between the morphology of the cut and the burrs with operating parameters such as power density and position of the focal point. The study was developed for the SAE 1020 steel with and without rocky bulkhead (Travertine). Also, the changes in the microstructure of adjacent regions of duplex steel in 2205 for different ranges of power density were assessed and finally it was evaluated the use of laser cutting of stainless steel submerged in water. It follows that there is a burr formation, which increases as the power density decreases. On the other hand, the higher the power density, the greater is the extent of change in the steel microstructure. Cutting steel with rocky bulkhead opens new perspectives for the tool development with high power laser for well completion in the oil industry tool.

Page generated in 0.1014 seconds